More Mileage From Corn Silage

- Hybrid selection
- Management for yield AND quality
 - Population
 - Planting date
 - Row spacing
 - Soil fertility
 - Weed control
 - Irrigation
- Harvest
 - Timing
 - Cutting height
 - Special situations
 - Frost
 - Drought stress
 - Stalklage
- Ensiling
 - Feed-out problems
 - Inoculants and fermentation
Desirable Forage Characteristics

- What makes a good forage?
 - High yield
 - High energy (high digestibility)
 - High intake potential (low fiber)
 - High protein
 - Proper moisture at harvest for storage

- Ultimate test is animal performance
Wisconsin Corn Hybrid Silage Performance Trial Measurements

- **Agronomic**
 - Yield: Tons Dry matter / A
 - Moisture: %
 - Kernel milk stage: %

- **Quality (NIR)**
 - Crude protein: %
 - Acid detergent fiber: %
 - Neutral detergent fiber: %
 - In vitro true digestibility: %
 - Cell wall digestibility of stover: %

- **Performance index**
 - Milk per ton: The amount of milk production from one ton of silage using the quality measures. (Estimate is based on a standard cow body weight of 1350 pounds and milk production level of 90 pounds milk per day at 3.8 percent fat.)

 - Milk per acre = Milk per ton X Dry matter yield per acre
Table 11. Southern Zone - Early Maturity Silage Trial

105 DAY RELATIVE MATURITY OR EARLIER, BASED ON COMPANY RATING

<table>
<thead>
<tr>
<th>BRAND</th>
<th>HYBRID</th>
<th>Yield</th>
<th>Moist</th>
<th>Milk</th>
<th>CP</th>
<th>ADF</th>
<th>NDF</th>
<th>IVD</th>
<th>CWD</th>
<th>MILK PER</th>
<th>TON</th>
<th>ACRE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dairyland</td>
<td>Stealth 1406</td>
<td>12.0</td>
<td>53.7</td>
<td>10</td>
<td>6.6</td>
<td>20</td>
<td>40</td>
<td>79</td>
<td>49</td>
<td>2350</td>
<td>*27100</td>
<td>*12.0</td>
</tr>
<tr>
<td>Brunner</td>
<td>S-5474</td>
<td>12.0</td>
<td>54.7</td>
<td>10</td>
<td>6.7</td>
<td>20</td>
<td>41</td>
<td>79</td>
<td>49</td>
<td>2320</td>
<td>*28200</td>
<td>*13.0</td>
</tr>
<tr>
<td>Carharts Blue Top</td>
<td>CX105A</td>
<td>10.0</td>
<td>58.8</td>
<td>20</td>
<td>7.0</td>
<td>19</td>
<td>38</td>
<td>80</td>
<td>49</td>
<td>2490</td>
<td>*25900</td>
<td>*11.0</td>
</tr>
<tr>
<td>Kaltenberg</td>
<td>K5109</td>
<td>10.0</td>
<td>61.3</td>
<td>30</td>
<td>6.8</td>
<td>19</td>
<td>40</td>
<td>80</td>
<td>50</td>
<td>2420</td>
<td>24700</td>
<td>12.0</td>
</tr>
<tr>
<td>Cargill</td>
<td>4111</td>
<td>9.9</td>
<td>61.7</td>
<td>20</td>
<td>6.9</td>
<td>21</td>
<td>41</td>
<td>78</td>
<td>48</td>
<td>2230</td>
<td>22300</td>
<td>11.0</td>
</tr>
<tr>
<td>Dekalb</td>
<td>DK591</td>
<td>12.0</td>
<td>61.8</td>
<td>30</td>
<td>7.3</td>
<td>22</td>
<td>43</td>
<td>79</td>
<td>50</td>
<td>2190</td>
<td>26500</td>
<td>13.0</td>
</tr>
</tbody>
</table>

105-DAY HYBRID TRIAL AVERAGE ##

<table>
<thead>
<tr>
<th>BRAND</th>
<th>HYBRID</th>
<th>Yield</th>
<th>Moist</th>
<th>Milk</th>
<th>CP</th>
<th>ADF</th>
<th>NDF</th>
<th>IVD</th>
<th>CWD</th>
<th>MILK PER</th>
<th>TON</th>
<th>ACRE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Garst</td>
<td>8640</td>
<td>10.0</td>
<td>62.4</td>
<td>10</td>
<td>6.8</td>
<td>21</td>
<td>41</td>
<td>79</td>
<td>48</td>
<td>2300</td>
<td>23900</td>
<td>12.0</td>
</tr>
<tr>
<td>Top Farm</td>
<td>TFsx2103</td>
<td>9.9</td>
<td>64.7</td>
<td>20</td>
<td>7.0</td>
<td>20</td>
<td>41</td>
<td>79</td>
<td>48</td>
<td>2300</td>
<td>23000</td>
<td>11.0</td>
</tr>
<tr>
<td>Cargill</td>
<td>F657</td>
<td>8.8</td>
<td>65.2</td>
<td>40</td>
<td>7.1</td>
<td>21</td>
<td>43</td>
<td>81</td>
<td>56</td>
<td>2330</td>
<td>20600</td>
<td>9.3</td>
</tr>
<tr>
<td>Trelay</td>
<td>7004</td>
<td>9.2</td>
<td>69.5</td>
<td>30</td>
<td>7.5</td>
<td>21</td>
<td>42</td>
<td>79</td>
<td>50</td>
<td>2280</td>
<td>21100</td>
<td>11.0</td>
</tr>
<tr>
<td>MEAN</td>
<td></td>
<td>10.0</td>
<td>61.4</td>
<td>20</td>
<td>7.0</td>
<td>20</td>
<td>41</td>
<td>79</td>
<td>50</td>
<td>2320</td>
<td>24300</td>
<td>12.0</td>
</tr>
<tr>
<td>LSD(0.10)**</td>
<td></td>
<td>1.6</td>
<td>8.0</td>
<td>10</td>
<td>0.4</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>150</td>
<td>4100</td>
<td>1.7</td>
</tr>
</tbody>
</table>

University of Wisconsin - Madison
Normalized Corn Hybrid Silage Yield and Quality During 1990-1999 in Wisconsin

Lauer University of Wisconsin - Madison
Corn Specialty Hybrid Silage Yield and Quality During 1990-1999 in Wisconsin

Lauer University of Wisconsin - Madison
Whole-plant

\[y = 0.76x + 2.90 \]

\[R^2 = 0.93 \]

Stover

\[y = 0.25x + 2.12 \]

\[R^2 = 0.93 \]

Figure 1. Relationship between corn forage dry matter yield and era of release for whole-plant and stover.
Figure 4. Relationship between corn forage neutral detergent fiber concentration and era of release for whole-plant and stover.

\[
y = -12.8x + 511 \\
R^2 = 0.87
\]
Figure 6. Relationship between corn forage in vitro true digestibility and era of release for whole-plant and stover.
Figure 7. Relationship between corn forage milk yield/quality and era of release.

- Milk yield: $y = 42.8x + 627$, $R^2 = 0.88$
- Milk quality: $y = 2208x + 4662$, $R^2 = 0.94$
Criteria for Selecting Silage Hybrids

- Grain yield: allows flexibility (dual purpose)
- Whole plant silage yield
- Relative maturity: 5-10 days later than grain hybrids
- Standability: allows flexibility
- Pest resistance
- Silage quality

“Variation for silage yield and quality exists among commercial hybrids in Wisconsin.”
Corn Silage Yield and Quality Changes During Development

Milk per Acre (lb/A) vs Milk per Ton (lb/T)

- Pioneer 3578
- Arlington, WI - 1993

Harvest date:
- Jul 11 (V11)
- Jul 21 (V14)
- Jul 31 (R1)
- Aug 10 (R2)
- Aug 20 (R3)
- Aug 30 (R4)
- Sep 10 (R5)
- Sep 21 (R5.5)
- Oct 5 (R5.8)

Lauer University of Wisconsin - Madison
Corn Silage Yield and Quality Response to Planting Date

- **Full-season (108 d)**
- **Mid-season (98 d)**
- **Short-season (85 d)**

Milk per Acre (lb/A)

May 11	May 31	June 22	July 11
Arlington, 1994

University of Wisconsin - Madison
Relationship between corn silage yield and plant density in Wisconsin (1994 to 1996)

Average of six locations

Silage yield (T/A)

Harvest plant density (number/A)

Lauer University of Wisconsin - Madison
Relationship between corn silage Milk per Ton and plant density in Wisconsin (1994 to 1996)

Average of six locations

Milk per Ton (lb/T)

Harvest plant density (number/A)

18000 24000 30000 36000 42000

Lauer University of Wisconsin - Madison
Relationship between corn silage Milk per acre and plant density in Wisconsin (1994 to 1996).

Average of six locations

Milk per Acre (lb/A) vs. Harvest plant density (number/A)

Lauer University of Wisconsin - Madison
Corn Silage Yield (T/A) Response to Row Spacing in Wisconsin

Lauer University of Wisconsin - Madison
Relative change in silage yield and quality at different cutting heights during 1996

- Silage yield
- Milk per Ton
- Milk per acre

Percent Change (%)

Cutting height (inches):
- 6
- 12
- 18

University of Wisconsin - Madison
Relationship between whole plant moisture and kernel milk stage (1990 - 1999)

Whole plant moisture (%) vs Kernel milk stage

n = 1896

University of Wisconsin - Madison

Lauer
Silage drydown in Manitowoc County, WI.

- **1996**: $y = -0.4x + 164$, $R^2 = 0.77$
- **1997**: $y = -0.6x + 223$, $R^2 = 0.96$
- **1998**: $y = -0.6x + 204$, $R^2 = 0.91$

Sample dates:
- 22-Aug
- 29-Aug
- 5-Sep
- 12-Sep
- 19-Sep
- 26-Sep
- 3-Oct
Kernel milk “triggers” for timing silage harvest

<table>
<thead>
<tr>
<th>Silo structure</th>
<th>Recommended moisture content for ensiling</th>
<th>Kernel milk stage "trigger"</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>Horizontal bunker</td>
<td>70 to 65</td>
<td>80</td>
</tr>
<tr>
<td>Bag</td>
<td>70 to 60</td>
<td>80</td>
</tr>
<tr>
<td>Upright concrete stave</td>
<td>65 to 60</td>
<td>60</td>
</tr>
<tr>
<td>Upright oxygen limiting</td>
<td>60 to 50</td>
<td>40</td>
</tr>
</tbody>
</table>

"trigger": kernel milk stage to begin checking silage moisture
Silage moisture decreases at an average rate of 0.5% per day during September