Betting The Farm On Racehorse Hybrids

Joe Lauer and Dale Hicks
University of Wisconsin and University of Minnesota
Hybrid Stability

• What is it?

• Matching Hybrids to Conditions?
 ✓ “Fix / Flex”
 ✓ “Offensive / Defensive”
 ✓ “Racehorse / Workhorse”
Objectives

- Do racehorse hybrids exist?
- How risky are they?
- Should farmers buy them?
Hybrid stability - Corn Breeders Definition

slope = 1 is a stable hybrid shows a "minimum of interaction" with the environment (Eberhart and Russell)
What is a racehorse hybrid?

- **Racehorse**: slope > 1
- **Stable**: slope = 1
- **Workhorse**: slope < 1

Environmental Index

Hybrid Grain Yield

Low Yields

High Yields
Ideally, we want above average hybrids ... (Can we always operate above the line?)

- **Ideal Workhorse**
 - slope < 1
 - intercept > 0

- **Ideal Racehorse**
 - slope > 1
 - intercept > 0

Hybrid Grain Yield vs. Environmental Index

Low Yields

High Yields

High

Low
Data Sets For Stability Analysis

- **Minnesota Corn Grower Hybrid Strip Tests**
 - ✓ 2002 and 2003
 - ✓ 1 to 6 locations per county
 - ✓ 200 hybrids tested
 - ✓ Non-replicated at a location
 - ✓ Chose the high, average, and low yielding hybrids grown at 7 or more locations

- **Missouri 2003 Central Tests**
 - ✓ Top 10, average 10, and lowest 10 hybrids
 - ✓ 5 locations

- **Wide Area Tests (WI, IL, MI, NE, KS, IA, & PA)**
 - ✓ Highest 12 and Lowest 11 Hybrids
 - ✓ 30 to 380 Environments; 1997 - 2001
Materials and Methods

• Used SELECT data base which is comprised of University corn hybrid trial data.
 ✓ Total hybrids = 17,890
 ✓ Total replicate means = 147,648
 ✓ Total plots = ~500,000 (442,944 to 590,592)

• Chose hybrids grown in 7 or more environments
 ✓ Hybrids = 2563
 ✓ Total replicate means = 51,397
 ❑ Used 76% of original data set
All data derived from University trials

<table>
<thead>
<tr>
<th>State</th>
<th>First Year</th>
<th>Last Year</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>IA</td>
<td>1996</td>
<td>2001</td>
<td>21004</td>
</tr>
<tr>
<td>IL</td>
<td>1999</td>
<td>2001</td>
<td>5619</td>
</tr>
<tr>
<td>KS</td>
<td>1996</td>
<td>2001</td>
<td>4913</td>
</tr>
<tr>
<td>MI</td>
<td>1997</td>
<td>2001</td>
<td>5361</td>
</tr>
<tr>
<td>MN</td>
<td>2001</td>
<td>2001</td>
<td>903</td>
</tr>
<tr>
<td>NE</td>
<td>1997</td>
<td>2001</td>
<td>5578</td>
</tr>
<tr>
<td>PA</td>
<td>1997</td>
<td>2001</td>
<td>3423</td>
</tr>
<tr>
<td>WI</td>
<td>1996</td>
<td>2003</td>
<td>15729</td>
</tr>
<tr>
<td>WY</td>
<td>1998</td>
<td>2001</td>
<td>88</td>
</tr>
</tbody>
</table>
Yields of Hybrid Groups For A Range of Yield Levels
Minnesota Corn Growers County Plots 2002

- High Group $b = 0.94$, 182 bu/a
- Avg Group $b = 0.74$, 174 bu/a
- Low Group $b = 0.98$, 166 bu/a

Deviation of Location Avg From All Locs Avg

Yield (bu/a)
Yields of Hybrid Groups For A Range of Yield Levels
Central Missouri Corn Tests, 2003

- High 10 Group $b=0.99$ 179 bu/a
- Avg Group $b=1.0$ 163 bu/a
- Low Group $b=0.97$ 150 bu/a
Seven States Four Years 30 - 380 Locations

Yield (Bu/A) vs. Environmental Index (Bu/A)

High Group: $b=0.99$, 174 Bu/A

Low Group: $b=0.89$, 152 Bu/A
Should a farmer grow a racehorse hybrid?

<table>
<thead>
<tr>
<th>Hybrid class</th>
<th>N</th>
<th>%</th>
<th>Slope</th>
<th>Low</th>
<th>Average</th>
<th>High</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bu/ El</td>
<td>Bu/ A</td>
<td>Bu/ A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Racehorse</td>
<td>141</td>
<td>5.5</td>
<td>1.28</td>
<td>91</td>
<td>167</td>
<td>230</td>
<td>139</td>
</tr>
<tr>
<td>Ideal Racehorse</td>
<td>4</td>
<td>0.2</td>
<td>1.30</td>
<td>131</td>
<td>168</td>
<td>234</td>
<td>103</td>
</tr>
<tr>
<td>Stable</td>
<td>2198</td>
<td>85.8</td>
<td>1.00</td>
<td>112</td>
<td>164</td>
<td>207</td>
<td>95</td>
</tr>
<tr>
<td>Workhorse</td>
<td>187</td>
<td>7.3</td>
<td>0.74</td>
<td>115</td>
<td>159</td>
<td>198</td>
<td>83</td>
</tr>
<tr>
<td>Ideal Workhorse</td>
<td>12</td>
<td>0.5</td>
<td>0.71</td>
<td>105</td>
<td>154</td>
<td>184</td>
<td>79</td>
</tr>
<tr>
<td>No relationship</td>
<td>21</td>
<td>0.8</td>
<td>---</td>
<td>164</td>
<td>164</td>
<td>164</td>
<td>---</td>
</tr>
<tr>
<td>Total</td>
<td>2563</td>
<td>100</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>
Conclusions

- **Racehorse, Stable and Workhorse hybrids exist.**
 - Racehorse hybrids = 6% of hybrids tested
 - Stable hybrids = 86% of hybrids tested
 - Workhorse hybrids = 8% of hybrids tested

- **Racehorse hybrids are riskier than Stable or Workhorse hybrids.**
 - Racehorse range = 138 bu/A
 - Stable range = 95 bu/A
 - Workhorse range = 82 bu/A
 - In an “average” environment Racehorse and Stable hybrids are 8 and 5 bu/A better than Workhorse hybrids.

- **“Ideal” racehorse and workhorse hybrids rarely exist.**
Recommendations

• “A Good Yielding Hybrid is a Good Yielding Hybrid - Regardless of Environment. Choose Good Ones.”

• Use multi-environment average data
 ✓ Begin with trials in zone(s) nearest you
 ✓ Compare hybrids with similar maturities
 ✓ Use many years and locations

• Evaluate consistency of performance
 ✓ Check performance in other zones and locations
 ✓ Check other reliable unbiased trials
 ✓ Be wary of inconsistent performance.

You are taking a tremendous gamble if basing your hybrid selection decisions on 1 or 2 local test plots
The End of the Row - Questions?
Thanks for your attention!