What Have Transgenic Crops Meant to Farmers?

Joe Lauer, *Corn Agronomist*
University of Wisconsin-Madison

Presented at the
Wisconsin Crop Management Conference
Madison, WI
January 14, 2009
Overview

● The “Grand Experiment”
 ✓ Yield progress versus yield protection

● What do transgenics crops mean for the farmer? Society?

● Performance of transgenics
A “Grand Experiment” is going on in the countryside …
Corn yield in Wisconsin since 1866

- Top Hybrid = 2.6 bu/A yr
- Arlington = 2.7 bu/A yr
- Marshfield = 2.6 bu/A yr
 source: UW Hybrid Trials

- 1866 to 1930 = 0.0 bu/A yr
- 1931 to 1995 = 1.4 bu/A yr
- 1996 to 2006 = 1.9 bu/A yr
 source: USDA Statistics

The yield march continues...

Open Pollinated Era

Hybrid Era

Transgenic Era
Corn Yield Progress in Wisconsin
(Top Producer in Category)

All = 3.6 bu/A yr
PEPS Cash Corn = 4.8 bu/A yr
PEPS Livestock Corn = 4.4 bu/A yr
NCGA Non Irrigated = 4.8 bu/A yr
NCGA No Till/Strip Till Non Irrigated = 4.5 bu/A yr
NCGA No Till/Strip Till Irrigated = 3.0 bu/A yr
NCGA Irrigated = 3.2 bu/A yr
NCGA Ridge Till Irrigated = 3.3 bu/A yr
NCGA Ridge Till Non Irrigated = 3.5 bu/A yr

Source: Data derived from grower yield contests (PEPS = 1987 to 2006; NCGA = 1983 to 2006)
“Biotech crops do not add to yield … they protect yield.”
Well managed normal hybrids can yield the same as transgenic hybrids. Transgenic hybrids yield at the top AND bottom of a performance trial.

Pros
● Efficacy
● Value of “ease of use”
 ✓ Sprayer cleanup
 ✓ Herbicide certification
● Crop safety
● Human safety
● Perceived risk decrease
 ✓ Biotech Yield Endorsement
● Potential for increased quality/ nutrition AND yield

Cons
● Potential development of resistance
● Unknown implications for the Midwest US (corn / soybean) cropping system.
● Cost: When is enough money enough?
 ✓ Research and Ramp-up expenses
 ✓ Patent expiration
Transgenic Events that have come (*and gone*) in the Wisconsin Corn Trials

<table>
<thead>
<tr>
<th>Insecticide Transgenes</th>
<th>Herbicide Transgenes</th>
</tr>
</thead>
<tbody>
<tr>
<td>● European Corn Borer</td>
<td>● Roundup Ready</td>
</tr>
<tr>
<td>✓ Bt176 (NaturGard Knockout): 1996-2001</td>
<td>✓ MonGA21 (RR1): 1998-</td>
</tr>
<tr>
<td>✓ Bt11 (AgriSure-CB): 1996-</td>
<td>✓ Nk603 (RR2): 2000-</td>
</tr>
<tr>
<td>✓ Mon810 (YieldGard-CB): 1997-</td>
<td>● Liberty Link</td>
</tr>
<tr>
<td>✓ DBT418: 1998-1999</td>
<td>✓ T25: 1997-</td>
</tr>
<tr>
<td>✓ TC1507 (Herculex I): 2003-</td>
<td>● Tissue Cultured genes</td>
</tr>
<tr>
<td>● Corn Rootworm</td>
<td>✓ IMI (IT and IR): 1993-</td>
</tr>
<tr>
<td>✓ MIR604 (AgriSure-CR): 2003-</td>
<td></td>
</tr>
<tr>
<td>✓ DAS591227 (Herculex II): 2006-</td>
<td></td>
</tr>
</tbody>
</table>

http://corn.agronomy.wisc.edu
Single, Paired, Triple and Quad Stacks
Making some Sense out of the Options!

● Often more complex to evaluate than normal hybrids. You need to know...
 ✓ Performance compared to other hybrids with similar trait, if others exist.
 ✓ Trade-off economics between pesticide tolerant trait and actual pesticide.
 ✓ Grain yield, output trait “yield” or quality, and other important characteristics.
 ✓ Finding comparative data in public or private trial reports may be difficult.
Rationale and Situation

- Corn is grown on 4 million acres in WI. A one bushel increase by farmers increases farm income $8 to $16 million dollars annually.

- In 2008, 520 corn hybrids were tested at 14 locations.

Objective

- To provide unbiased performance comparisons of hybrid seed corn available in Wisconsin.
Non-transgenic corn hybrids ... there aren’t as many available ... they yield less than transgenic corn hybrids (~ 5 bu/A)

Source: Lauer (unpublished)
At the end of the day ...

How should you compare corn hybrids?
What is the control treatment?

- **Isoline comparison**
 - Preferred (CAST)
 - Problem: Backcross conversion
 - “Moving target”
 - Assumes conversion is clean
 - “Base genetics”, “families”

- **Within trials comparison**
 - Compare to trial average
 - Cohorts
 - Transgenic versus Non-transgenic
 - ‘Top’ hybrids (20%) cohort:
 More ‘real world’ since farmers have access to all hybrids
Insect Resistant Transgenic Corn Hybrids - European Corn Borer (*Ostrinia nubilalis*)

- First discovered near Boston in 1917. Damages >200 plants.
- Economic damage (Ostlie, 1997)
 - 1st generation = $7 /A
 - 2nd generation = $13 /A
 - Total = > $1 billion annually

Photos and map credit: Marlin Rice (ISU)

http://corn.agronomy.wisc.edu

Lauer © 1994-2009
University of Wisconsin - Agronomy
Mon810 (n = 4858) advantage to non-transgenic (n = 8767) corn hybrids
Bt11 (n= 608) advantage to non-transgenic (n= 7840) corn hybrids

- All hybrids
- Top 20% of hybrids

Grain yield (bu/ A) advantage

Favors Transgenic
Favors Non-Transgenic

- Bt11 (n=60)
- Bt11+ IT (n=3)
- Bt11+ IT+ T25 (n=6)
- Bt11+ SytGA21 (n=4)
- Bt11+ T25 (n=501)
- Bt11+ T25+ MIR604 (n=21)
- Bt11+ T25+ MonGa21 (n=13)

Grain yield (bu/ A) advantage

-30 -25 -20 -15 -10 -5 0 5 10 15
TC1507 (n= 227) advantage to non-transgenic (n= 940) corn hybrids

Grain yield (bu/A) advantage

2003 (n=22) 2004 (n=44) 2005 (n=60) 2006 (n=101) Average

Favors Transgenic
12 9 9 8

Favors Non-Transgenic

All hybrids
Top 20% of hybrids

-10 -5 0 5 10 15

Grain yield (bu/A) advantage

TC1507 (n=73)

TC1507+ T25 (n=140)

TC1507+ DAS591227 (n=3)

TC1507+ Nk603 (n=6)

TC1507+ DAS591227+ Nk603 (n=5)

Favors Non-Transgenic

Favors Transgenic

Lauer © 1994-2009
University of Wisconsin - Agronomy

http://corn.agronomy.wisc.edu
Insect Resistant Transgenic Corn Hybrids -

Corn rootworm (*Diabrotica* sp.)

- **Annual economic damage=**
 - $800 million crop loss
 - $200 million in control costs

- **Current control strategies:**
 - Crop rotation
 - Insecticide

Photos credit: Marlin Rice (ISU)
Map credit: Ken Ostlie (MN)
Mon863 (n=940) advantage to non-transgenic (n=1116) corn hybrids

Grain yield (bu/ A) advantage

Source: Lauer

http://corn.agronomy.wisc.edu

Lauer © 1994-2009
University of Wisconsin - Agronomy
Herbicide Tolerant Transgenic Corn Hybrids

- **Glyphosate resistant** (Roundup Ready)
 - ✔ RR – MonGA21
 - ✔ RR2 – Nk603

- **Glufosinate resistant** (Liberty Link)
 - ✔ T25
Roundup Ready (n= 8481) advantage to non-transgenic (n= 6623) soybean varieties

Grain yield (bu/ A) advantage

-1 -2 -3 -4 -5

Favors Transgenic

Favors Non-Transgenic

1997 (n=56) 1998 (n=665) 1999 (n=1110) 2000 (n=804) 2001 (n=1187) 2002 (n=1250) 2003 (n=1179) 2004 (n=1150) 2005 (n=1080) Average

Lauer © 1994-2009
University of Wisconsin - Agronomy
http://corn.agronomy.wisc.edu
MonGA21 (n=250) advantage to non-transgenic (n=5574) corn hybrids

MonGA21 (n=137) Favors Transgenic

MonGA21 + Mon810 (n=97) Favors Transgenic

MonGA21 + Bt11+T25 (n=13)

Grain yield (bu/A) advantage

1998 n=20 1999 n=12 2000 n=16 2001 (n=35) 2002 (n=69) 2003 (n=41) 2004 (n=23) 2005 (n=8) 2006 (n=26) Average

-17 -10 -14 -12 -14 -11 -10 -5 0 5 10 15
Nk603 (n= 1902) advantage to non-transgenic (n= 3703) corn hybrids

Grain yield (bu/A) advantage

All hybrids
Top 20% of hybrids

Favors Transgenic

Favors Non-Transgenic

1999 (n=15)
2000 (n=8)
2001 (n=35)
2002 (n=60)
2003 (n=183)
2004 (n=303)
2005 (n=512)
2006 (n=786)
Average (n=1902)

Nk603 (n=495)

Nk603+ Mon810 (n=1028)

Nk603+ Mon863 (n=80)

Nk603+ TC1507 (n=6)

Nk603+ Mon810+ Mon863 (n=288)

Nk603+ TC1507+ DAS591227 (n=5)

Grain yield (bu/A) advantage

Favors Non-Transgenic

Favors Transgenic

Lauer © 1994-2009
University of Wisconsin - Agronomy

http://corn.agronomy.wisc.edu
T25 (n= 887) advantage to non-transgenic (n= 9909) corn hybrids

All hybrids
Top 20% of hybrids

Grain yield (bu/A) advantage

Favors Transgenic
Favors Non-Transgenic

1996 (n=6)
1997 (n=18)
1998 (n=54)
1999 (n=61)
2000 (n=82)
2001 (n=81)
2002 (n=62)
2003 (n=99)
2004 (n=107)
2005 (n=180)
2006 (n=137)
Average

T25 (n=84)
T25+ Bt11 (n=501)
T25+ Mon810 (n=33)
T25+ TC1507 (n=140)
T25+ Bt11+ IT (n=6)
T25+ Bt11+ MIR604 (n=21)
T25+ Bt11+ MonGA21 (n=13)

Grain yield (bu/A) advantage

-30 -25 -20 -15 -10 -5 0 5 10 15

Favors Transgenic
Favors Non-Transgenic

Lauer © 1994-2009
University of Wisconsin - Agronomy
http://corn.agronomy.wisc.edu
Herbicide Tolerant Tissue Cultured Corn Hybrids

- Imidazolinone tolerant (Pursuit)
 - IT – “Clearfield”
 - IR

- Sethoxydim resistant (Poast)
IMI-IT (n= 257) advantage to non-transgenic (n= 8658) corn hybrids

Grain yield (bu/A) advantage

Favors Cultured/Transgenic

Favors Non-Transgenic

All hybrids
Top 20% of hybrids

IT (n=219)

IT+ Bt11 (n=3)

IT+ Bt176 (n=3)

IT+ Mon810 (n=9)

IT+ Bt11+ T25 (n=6)

-30 -25 -20 -15 -10 -5 0 5 10 15

Grain yield (bu/A) advantage

Lauer © 1994-2009
University of Wisconsin - Agronomy

http://corn.agronomy.wisc.edu
Summary on Transgenic Performance

- Hybrids must stand on their own.
 - Pick corn hybrids and soybean varieties based upon individual performance.
 - DO NOT assume that performance is equivalent across a hybrid/variety family or ‘base’ genetics.
 - DO NOT assume you are getting a good deal because you got an extra trait.

- Grain yield of corn hybrids with CB transgenes (Bt11, Mon810 and TC1507) is better than nontransgenic hybrids.
 - Bt11, Mon810 and TC1507 stacked with T25, MonGA21 or Nk603 perform well.

- Herbicide resistant transgenes (T25, MonGA21, and Nk603, as well as IMI) do not add to yield.
 - Recommended for problem fields or difficult management situations.

- Care must be taken in selecting non-transgenic corn hybrids.

- Has the “Yield March” (genetic gain) come to an end?
 - Are we now just protecting yield?

- Roundup ready soybean varieties produce greater yield than normal varieties.

- CR transgenes ==> Yield lag or drag.

- “Variation for grain yield exists among commercial transgenic corn hybrids and soybean varieties sold in Wisconsin.”
Spreadsheet for Calculating Seed Costs

Crop Seed Price Calculator v1.2

Written by Joe Lauer, University of Wisconsin (September 2008)

<table>
<thead>
<tr>
<th>Hybrid / Variety</th>
<th>Hybrid A</th>
<th>Hybrid B</th>
<th>difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crop Seed Price Calculator v1.2</td>
<td>150.00</td>
<td>150.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Predicted Field Yield (bu/A)</td>
<td>150</td>
<td>150</td>
<td>0</td>
</tr>
<tr>
<td>Economic advantage ($/acre)</td>
<td>Hybrid A = $150.00, Hybrid B = $160.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seed Price ($/bag)</td>
<td>$150.00</td>
<td>$150.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Kernels/Seeds per bag (no/bag)</td>
<td>80,000</td>
<td>80,000</td>
<td>0.00</td>
</tr>
<tr>
<td>Seed Population (number/acre)</td>
<td>32,000</td>
<td>32,000</td>
<td>0</td>
</tr>
<tr>
<td>Potential plant death (%)</td>
<td>10</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>Acres per bag (acres/bag)</td>
<td>2.27</td>
<td>2.27</td>
<td>0.00</td>
</tr>
<tr>
<td>Seed Cost ($/acre)</td>
<td>$66.00</td>
<td>$66.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Herbicide Cost ($/acre)</td>
<td>$0.00</td>
<td>$0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Insecticide Cost ($/acre)</td>
<td>$0.00</td>
<td>$0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Fungicide Cost ($/acre)</td>
<td>$0.00</td>
<td>$0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Insurance Cost ($/acre)</td>
<td>$0.00</td>
<td>$0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Harvest Moisture (%)</td>
<td>20.0</td>
<td>20.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Drying ($/point/bushel)</td>
<td>$0.06</td>
<td>$0.06</td>
<td>0.00</td>
</tr>
<tr>
<td>Drying Cost ($/bushel)</td>
<td>$0.27</td>
<td>$0.27</td>
<td>0.00</td>
</tr>
<tr>
<td>Handling Cost ($/bushel)</td>
<td>$0.02</td>
<td>$0.02</td>
<td>0.00</td>
</tr>
<tr>
<td>Hauling Cost ($/bushel)</td>
<td>$0.04</td>
<td>$0.04</td>
<td>0.00</td>
</tr>
<tr>
<td>Trucking Cost ($/bushel)</td>
<td>$0.11</td>
<td>$0.11</td>
<td>0.00</td>
</tr>
<tr>
<td>Storage Cost ($/bushel)</td>
<td>$0.12</td>
<td>$0.12</td>
<td>0.00</td>
</tr>
<tr>
<td>Yield adjustment ($/bushel)</td>
<td>$0.56</td>
<td>$0.56</td>
<td>0.00</td>
</tr>
<tr>
<td>Yield adjustment ($/acre)</td>
<td>$84.00</td>
<td>$84.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Total Input Cost ($/acre)</td>
<td>$150.00</td>
<td>$150.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Yield advantage bushel/acre</th>
<th>Crop Price ($/bushel)</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>$14.00</td>
</tr>
<tr>
<td>12</td>
<td>$12.00</td>
</tr>
<tr>
<td>10</td>
<td>$10.00</td>
</tr>
<tr>
<td>8</td>
<td>$8.00</td>
</tr>
<tr>
<td>6</td>
<td>$6.00</td>
</tr>
<tr>
<td>4</td>
<td>$4.00</td>
</tr>
<tr>
<td>2</td>
<td>$2.00</td>
</tr>
<tr>
<td>Hybrid A = (Hybrid B)</td>
<td>0.00</td>
</tr>
<tr>
<td>Hybrid A yields less than Hybrid B</td>
<td>2.00</td>
</tr>
<tr>
<td>Hybrid B yields more than Hybrid A</td>
<td>2.00</td>
</tr>
</tbody>
</table>

http://corn.agronomy.wisc.edu
It is an exciting time to be an agronomist ...

- The true impact of transgenic crops is unclear for the farmer ...
 - Economically = “Wash”
 - Trade-offs
 - Corn has “trained” man well.

- Transgenics are applying unprecedented pressure on Mother Nature ...

- Unclear implications for ...
 - Crop rotation
 - Tillage
 - Plant density
 - Seed treatment
 - Grain and silage nutritional quality. Biofuel quality?

- The “new” agronomics and economics of crop production ...
Thanks for your attention!
Questions?

2009 Corn Conferences

Waupaca
January 21

West Salem
January 20

Kiel
January 22

January 29-30, 2009
Kalahari Resort
Wisconsin Dells, WI