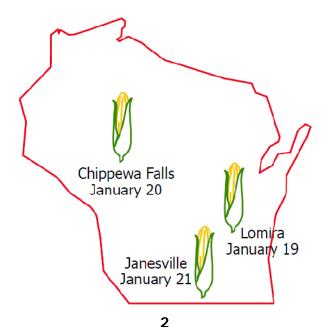
2010 Wisconsin Corn Conference Sponsors

Dairyland Seed Company First Capital Ag Legacy Seeds AgriGold Hybrids Contree Sprayer Monsanto Company - DeKalb Mycogen Seeds Syngenta NK Brand Seeds Pioneer Hi-Bred, International

Wisconsin Corn Promotion Board Wisconsin Corn Growers Association

University of Wisconsin Agronomy Department University of Wisconsin Cooperative Extension UWEX Cooperating Counties – Fond du Lac, Chippewa, and Rock



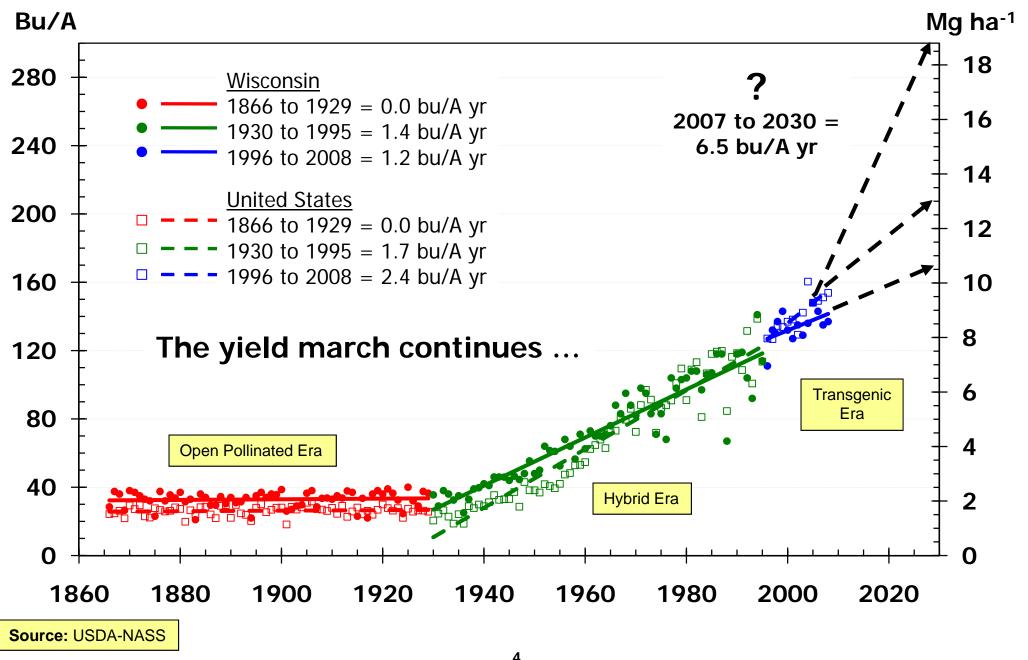
Key Management Practices for Profitable Corn Production in the Northern Corn Belt

Joe Lauer University of Wisconsin-Madison

2010 Wisconsin Corn Conferences

Overview

- Corn yield progress
- Keys to high corn yields and profitability
 - Match hybrids to soils
 - Combine traits, tillage and residue to impact water use
 - Cost of production & economics hybrids, BYE, risk management
 - ✓ Seed treatments
 - Optimum planting configurations
 - Optimum seeding rates
 - Row spacing
 - Planting date
 - ✓ Eliminate weeds
 - ✓ Nitrogen and soil fertility
 - ✓ Rotation


tension

Harvest and store carefully

3

Corn yield in Wisconsin and the U.S. since 1866

<u>Extension</u>

Top 10 most common yield limiting factors ...

- And NO, it isn't about inputs.
- The three most important management decisions are:

Hybrid Selection,

Hybrid Selection,

Hybrid Selection.

 The main management objective is to <u>reduce stress</u> on the corn plants during the growing season ...

Ten Keys to Increased Corn Yield and Profitability

1) Match hybrids to soils

✓ Cold tolerance in NT systems

- 2) Combine traits, tillage and residue to impact water use
- Cost of production & economics hybrids, BYE, risk management
- 4) Seed treatments
- 5) Optimum planting configurations
 - Optimum seeding rates
 - ✓ Row spacing
 - ✓ Planting date
- 6) Eliminate weeds
- 7) Nitrogen and soil fertility
- 8) Rotation
- 9) Harvest and store carefully

10) Information management

- "Growers will be starving for information as they drown in it."
- Need basic agronomy and basic genetics
- Need basic data on environmental issues
- Web 2.0 Social networking of growers.
- Big issues
 - ✓ Data management
 - Environmental issues
 - ✓ Disease management

#1 Match hybrids to soils

7

#1 Match hybrids to soils ...

Crops in the Midwest are challenged by:

✓Wet springs result in lack of root surface area

Drainage is critical

- ✓ Dry and hot conditions during pollination, kernel set, and grain filling
- In the northern Corn Belt, pay special attention to maturity

• Pray for (Ideally) ...

- Spring dry enough for early planting, but wet enough to activate herbicides and promote good stands with uniform emergence
- Summer with timely rain (1-inch per week), lots of sunshine, and temperatures in mid-80's (day) and low 60's (night)
- ✓ Fall with sunny, dry weather to speed dry-down & allow harvest of "22% moisture corn" by November 1

Keys to Successfully Selecting Hybrids

- Understanding G x E
- Selection strategy that predicts future hybrid performance
 - ✓ Multi-location average
 - ✓ Consistent performance
- Pay attention to seed costs
- Every hybrid must stand on it's own
- Buy the traits you need

What is G x E?

Genotype by Environment

 Hybrids (genotypes) often respond (or interact) differently in different environments

□Soils,

Diseases,

Insects,

Fertility,

□and especially weather!

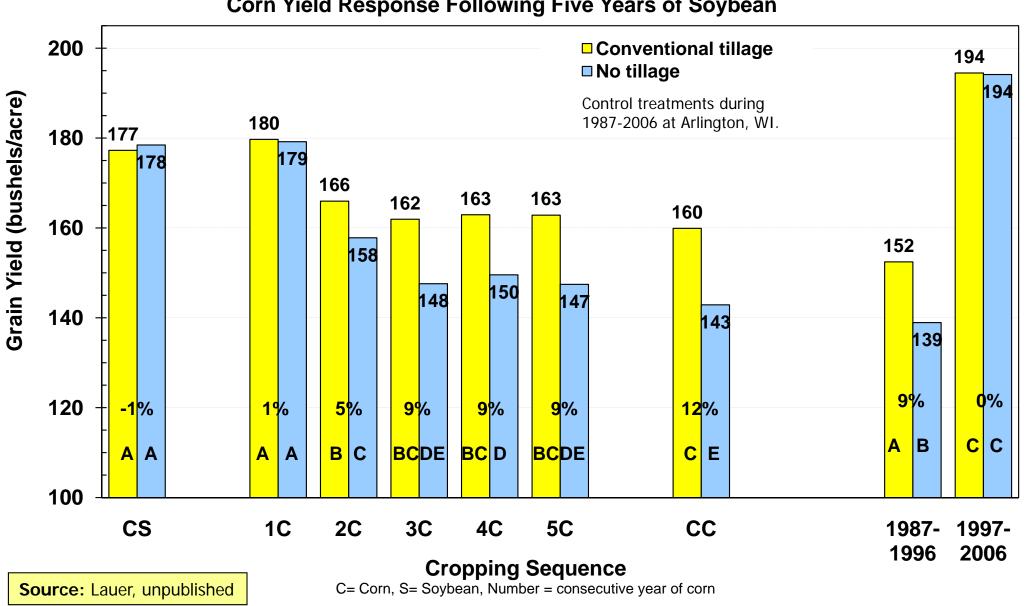
- Called different things by seed companies.
 - "Fix / Flex"
 - Given sive / Defensive"
 - "Racehorse / Workhorse"

 If G x E did not exist, we could grow one trial at one location and predict hybrid ranking around the world.

#2 Combine Traits, tillage and **Residue to** impact water use

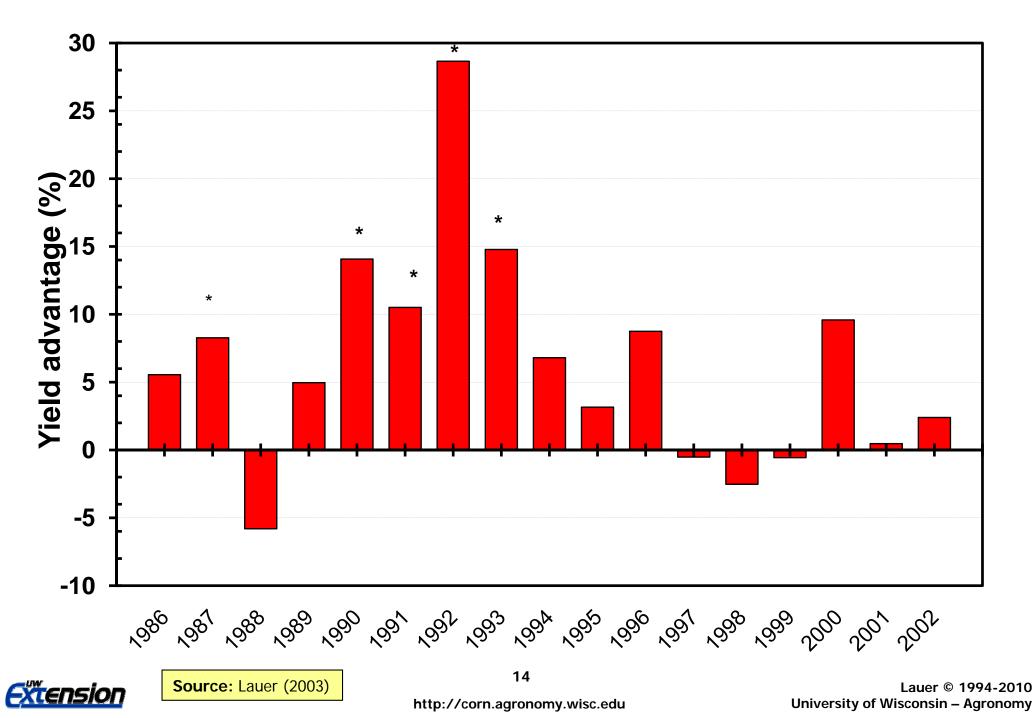
http://corn.agronomy.wisc.edu

#2 Combine traits, tillage and residue to impact water use


- Tillage is not necessary, except in continuous corn
- "It is all about stand establishment."
- Tillage responses more often measured in the northern corn belt (~5-7% increase).
- Less difference observed between tillage systems when using Roundup Ready crops.
 - CB and CR traits can control insect build-up that occurs with trash
- Tillage systems take time to equilibrate.
- Do you have reason to suspect compaction?
 - ✓ Sub-soil
 - ✓ How was it caused?

http://corn.agronomy.wisc.edu

1) Tillage does not affect corn yield the first year following soybean, but improves yield 5% in the second year, and 9% in the third year ... 2) No tillage response is observed in the second cycle ...



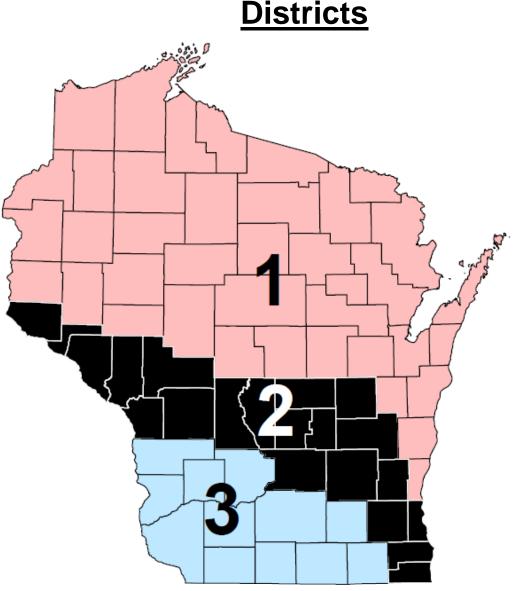
Corn Yield Response Following Five Years of Soybean

EXTENSION

http://corn.agronomy.wisc.edu

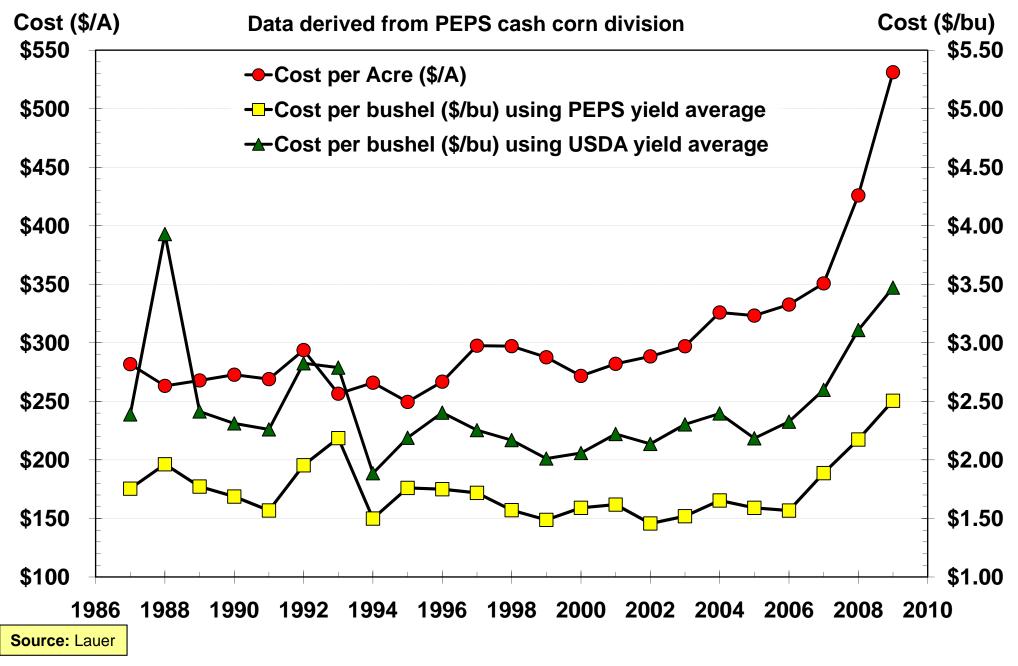
Yield advantage of chisel plow tillage over no-till 1986-2002 ("Long" Rotation trial, n= 6608 plots)

#3 Cost of production and economics


#3 Cost of Production and Economics <u>Profits through Efficient Production Systems</u>

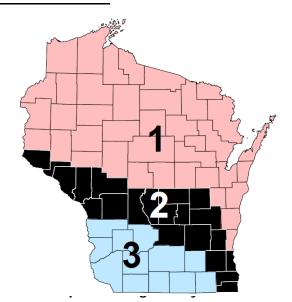
Objectives

- ✓ Cost analysis of grain enterprises
- Emphasize soil and water conservation, efficiency, profitability, and competitiveness vs. productivity alone
- Recognize the way efficient growers integrate practices into a system


Divisions

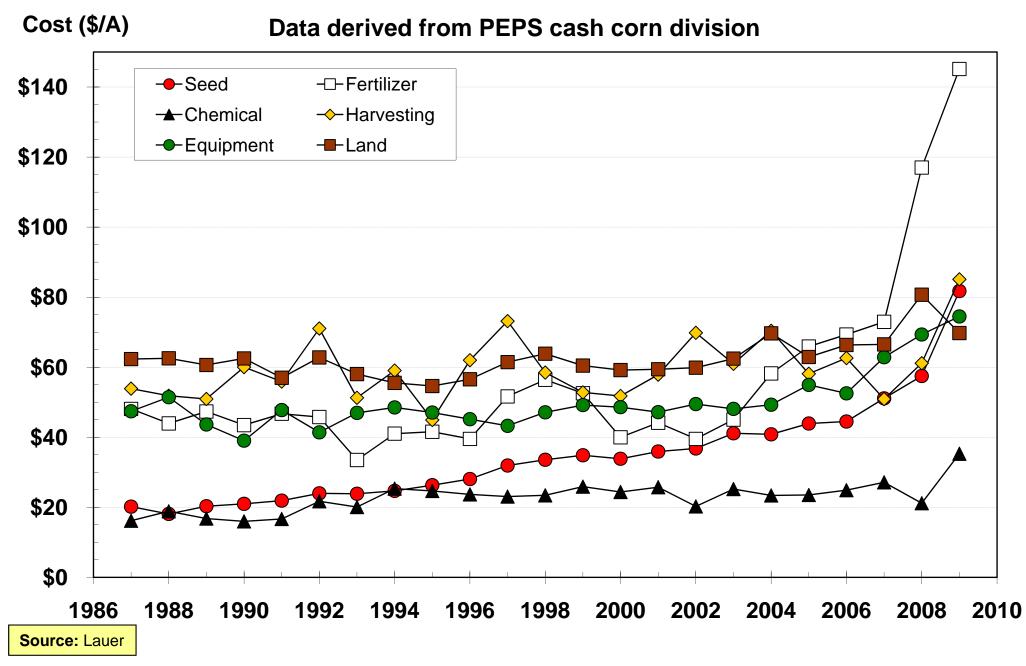
- ✓ Corn, Cash Crop
- ✓ Corn, Dairy and Livestock
- ✓ Corn, Silage
- "Green Fields Blue Waters" Award

How much does it cost to produce corn in WI?



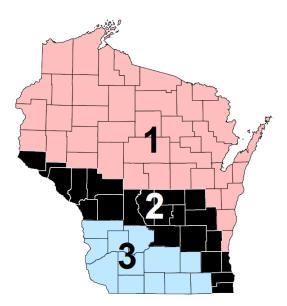
PEPS

Corn Cost of Production (\$/A)


	Cash corn									
District	Cost/A	Cost/Bu								
<u>2009</u>										
1	\$515	\$2.71								
2	\$539	\$2.25								
3	\$566	\$2.41								
<u>10 Year Average</u>										
1	\$301	\$1.70								
2	\$323	\$1.60								
3	\$334	\$1.58								

Source: Lauer (2000-2009)

Average corn production costs for major inputs



<u>Extension</u>

How can you get involved in PEPS?

- Contest versus Verification options
- Does it pay to grow corn on my farm?
 - ✓ Do I know my production costs?
 - If I do, how do I compare?
 - How efficient is my operation?
 - Am I a good steward?

✓ If I make changes, how does that affect my bottom-line?

What role can agents/dealers/consultants play in PEPS?

- Promote among producers who would benefit (helping with forms, soil loss and yield checks)
- Encourage National Corn Growers Association yield contestants to enter
- ✓ Provide input to PEPS committee from "real world"
- Financial sponsorship

Producing corn the "old fashioned way" – Do we go back to the way it was?

- Agronomic short answer = No!
- Economic short answer = Maybe!
 - \$100 per bag difference = \$40 per acre (80,000 seeds per bag planted at 32,000 seeds per acre)

• How much yield gain can you predict?

- ✓ Gain pays for seed price increases.
- What is the value of traits?
 - ✓ What needs to be accounted for?
- How do you make comparisons?
 - ✓ Isolines (or Families) if available
 - Breeder yes
 - Producers Not a good choice. You have access to the entire commercial hybrids market
 - Traits by themselves versus Stacked
 - Trial mean

- Trade-offs
 - ✓ Pros
 - Safety: Do not need to handling pesticides
 - Efficacy: Traits work
 - □ Insurance (BYE), "Peace of mind"
 - 🗸 Cons
 - Expense: Projections are \$500 per bag
 - Resistance potential, "The Grand Experiment"
- Remember "Traits do not increase yield, they protect yield."

Breakeven matrix (\$/A) between two hybrids for various seed bag cost differences

Yield	\$50 Bag difference				\$100 Bag difference				\$150 Bag difference						
increase	<u>Corn Price (\$/bu)</u>					Corn Price (\$/bu)				<u>Corn Price (\$/bu)</u>					
(bu/A)	2.50	3.00	3.50	4.00	4.50	2.50	3.00	3.50	4.00	4.50	2.50	3.00	3.50	4.00	4.50
0	-\$20	-\$20	-\$20	-\$20	-\$20	-\$40	-\$40	-\$40	-\$40	-\$40	-\$60	-\$60	-\$60	-\$60	-\$60
2	-\$15	-\$14	-\$13	-\$12	-\$11	-\$35	-\$34	-\$33	-\$32	-\$31	-\$55	-\$54	-\$53	-\$52	-\$51
4	-\$10	-\$8	-\$6	-\$4	-\$2	-\$30	-\$28	-\$26	-\$24	-\$22	-\$50	-\$48	-\$46	-\$44	-\$42
6	-\$5	-\$2	\$1	\$4	\$7	-\$25	-\$22	-\$19	-\$16	-\$13	-\$45	-\$42	-\$39	-\$36	-\$33
8	\$0	\$4	\$8	\$12	\$16	-\$20	-\$16	-\$12	-\$8	-\$4	-\$40	-\$36	-\$32	-\$28	-\$24
10	\$5	\$10	\$15	\$20	\$25	-\$15	-\$10	-\$5	\$0	\$5	-\$35	-\$30	-\$25	-\$20	-\$15
12	\$10	\$16	\$22	\$28	\$34	-\$10	-\$4	\$2	\$8	\$14	-\$30	-\$24	-\$18	-\$12	-\$6
14	\$15	\$22	\$29	\$36	\$43	-\$5	\$2	\$9	\$16	\$23	-\$25	-\$18	-\$11	-\$4	\$3
16	\$20	\$28	\$36	\$44	\$52	\$0	\$8	\$16	\$24	\$32	-\$20	-\$12	-\$4	\$4	\$12
18	\$25	\$34	\$43	\$52	\$61	\$5	\$14	\$23	\$32	\$41	-\$15	-\$6	\$3	\$12	\$21
20	\$30	\$40	\$50	\$60	\$70	\$10	\$20	\$30	\$40	\$50	-\$10	\$0	\$10	\$20	\$30

Assume: 80,000 seeds/bag planted at 32000 seeds/A for final population of 30000 plants/A

Spreadsheet for calculating crop seed prices

http://corn.agronomy.wisc.edu/Season/DSS.aspx

1	A	В	С	DE	F	G	Н	T	J	K	L	М	N
1	Crop Seed Price Calculator v1.2	written by	Joe Lauer	, University	of Wisconsin (Septemb	per 2	2008)			1	UW	CDC	ion
2											-74	e/ /5	ION
3	Predicted Field Yield (bu/A)	150											
4													
5	Hybrid / Variety	Hybrid A	Hybrid B	difference									
6	Seed Price (\$/bag)	\$150.00	\$250.00	-\$100.00	Economic advantage	(\$/a	acre) of	f Hybrid	A or H	lybrid E	3. Seed	price	
7	Kernels/Seeds per bag (no./bag)	80,000	80,000	0	difference = \$100 per bag: A = \$150, Hybrid B = \$250.								
8	Seed Population (number/acre)	32,000	32,000	0	Yield advantage Crop Price (\$/bushel)								
9	Potential plant death (%)	10	10	0	bushel/acre		\$2.50	\$3.00	\$3.50	\$4.00	\$4.50	\$5.00	\$5.50
10	Acres per bag (acres/bag)	2.27	2.27	0.00		14	\$23	\$30	\$37	\$44	\$51	\$58	\$65
11	Seed Cost (\$/acre)	\$66.00	\$110.00	-\$44.00		12	\$18	\$24	\$30	\$36	\$42	\$48	\$54
12	Herbicide Cost (\$/acre)	\$25.00	\$18.00	\$7.00	Hybrid A	10	\$13	\$18	\$23	\$28	\$33	\$38	\$43
13	Insecticide Cost (\$/acre)	\$20.00	\$0.00	\$20.00	yields less than	8	\$8	\$12	\$16	\$20	\$24	\$28	\$32
14	Fungicide Cost (\$/acre)	\$0.00	\$0.00	\$0.00	Hybrid B	6	\$3	\$6	\$9	\$12	\$15	\$18	\$21
15	Insurance Cost (\$/acre)	\$15.00	\$10.00	\$5.00	Martin	4	\$2	\$0	\$2	\$4	\$6	\$8	\$10
16	81			6		2	\$7	\$6	\$5	\$4	\$3	\$2	\$1
17	Harvest Moisture (%)	20.0	20.0	0.0	Hybrid A = Hybrid B	0	\$12	\$12	\$12	\$12	\$12	\$12	\$12
18	Drying (\$/point*bushel)	<u>\$0.06</u>	<u>\$0.06</u>	\$0.00		2	\$17	\$18	\$19	\$20	\$21	\$22	\$23
19	Drying Cost (\$/bushel)	\$0.27	\$0.27	\$0.00		4	\$22	\$24	\$26	\$28	\$30	\$32	\$34
20	Handling Cost (\$/bushel)	\$0.02	\$0.02	\$0.00	Hybrid A	6	\$27	\$30	\$33	\$36	\$39	\$42	\$45
21	Hauling Cost (\$/bushel)	\$0.04	\$0.04	\$0.00	yields more than	8	\$32	\$36	\$40	\$44	\$48	\$52	\$56
22	Trucking Cost (\$/bushel)	\$0.11	\$0.11	\$0.00	Hybrid B	10	\$37	\$42	\$47	\$52	\$57	\$62	\$67
23	Storage Cost (\$/bushel)	\$0.12	\$0.12	\$0.00		12	\$42	\$48	\$54	\$60	\$66	\$72	\$78
24	Yield adjustment (\$/bushel)	\$0.56	\$0.56	\$0.00		14	\$47	\$54	\$61	\$68	\$75	\$82	\$89
25	Yield adjustment (\$/acre)	\$84.00	\$84.00	\$0.00									5
26													
27	Total Input Cost (\$/acre)	\$210.00	\$222.00	\$12.00									
н	Crop Seed Price Calculator v1.2	a/			1.0			-	IIII				*

#4 Seed Treatments

#4 Seed Treatments

The Problem

- Historically seedling emergence is a problem in WI
- Changing farmer practices
 - ✓ Earlier planting dates
 - Increased acreage where corn is planted into reduced tillage seedbeds.
 - ✓ Seed environment is often cool and wet
 - "Slow-growth" syndrome in reduced tillage systems causes delayed emergence, poor seedling growth, and difficult stand establishment
- "Today there are more chances than ever for disease development from soil pathogens."

Race - Pathogen v. Corn

- Environments which favor seedling blight have high enough temperatures to start corn germination followed by a period of low temperatures
 - ✓ (Dickson, 1929; referring to the 1921 season).
- "... that other factors being constant, the relative growth rates of the host and pathogen determine to a considerable degree the severity of pre-emergence and seedling infection at different temperatures."

✓ (Leach, 1947)

http://corn.agronomy.wisc.edu

Efficacy of Corn Seed Treatments

Disease	Favorable Environment	Captan	Maxim	Apron
Rhizoctonia	Rainfall followed by cool and then warm weather	Good	Good	Poor
Fusarium	??	Good	Excellent	Poor
Pythium	Likes cold and wet	Poor	Poor	Excellent
Helminthosporium	??	Good	Good	Poor
Penicillium	??	Good	Good	Poor
Aspergillus	??	Good	Good	Poor

derived from Pedersen, U. of Illinois

Take home message ... The number of days from planting to emergence is a key factor in establishing the amount of seedling disease that will be infecting the crop.

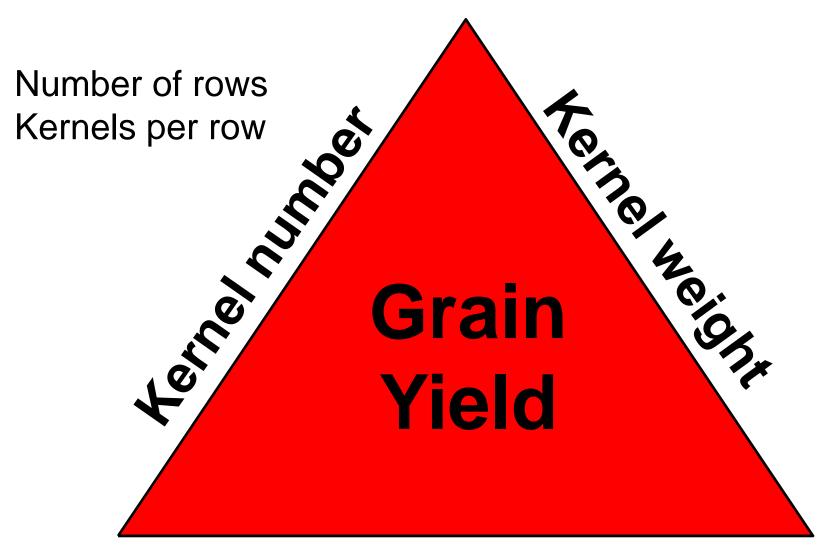
- Growers must do ALL of the right things to minimize early season STRESS
- It is hard to make money raising "runts"
- Rain a growers best friend or worst enemy
 - Rainfall soon after planting that results in saturated or nearly saturated soils - is a bigger factor on yield than is date of planting or tillage type
 - Grower's today plant large numbers of acres of corn each day-increasing the at risk acres when a major weather front comes through
- There is no second chance to do things right the first time

#5 Optimum Planting Configurations

#5 Optimum Planting Configurations – Plant density

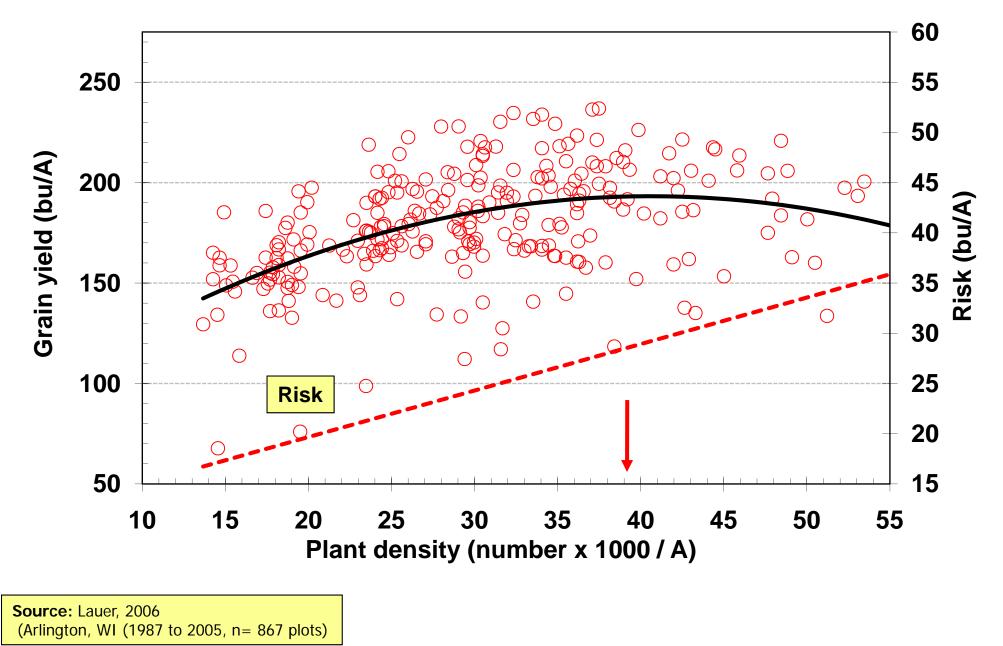
Plant density

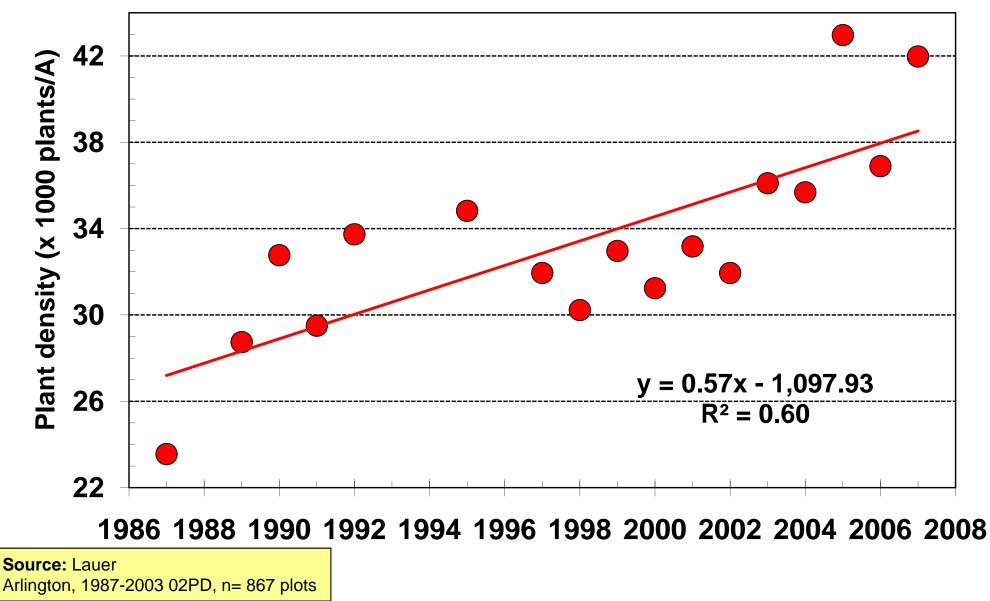
- Has the most potential to move a farmer from current yield levels
- Might be the place to start when moving off the yield plateau.
- Plant densities for maximum yield are increasing as newer hybrids are commercialized.


Row spacing

- ✓ Narrower is better
- ✓ Decision has low impact on yield
- Seeding depth
 - ✓ 1.5 2 inches
- Planting date

Yield Components of Corn




http://corn.agronomy.wisc.edu

Increasing plant density increases grain yield ... but there is a risk

<u>Extension</u>

Is Plant Density at Maximum Yield Changing? Annual grain yield increase at optimum plant density = 2.8 bu/A

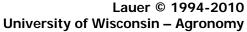
Guidelines for Choosing an Appropriate Plant Density for Corn

- May have the most potential to move a farmer from current yield levels.
 - ✓ Might be the place to start for moving off the "yield plateau."
 - Optimum plant densities seem to be increasing as newer hybrids are commercialized.

Grain yield increases to plant densities of 38,100 plants/A.

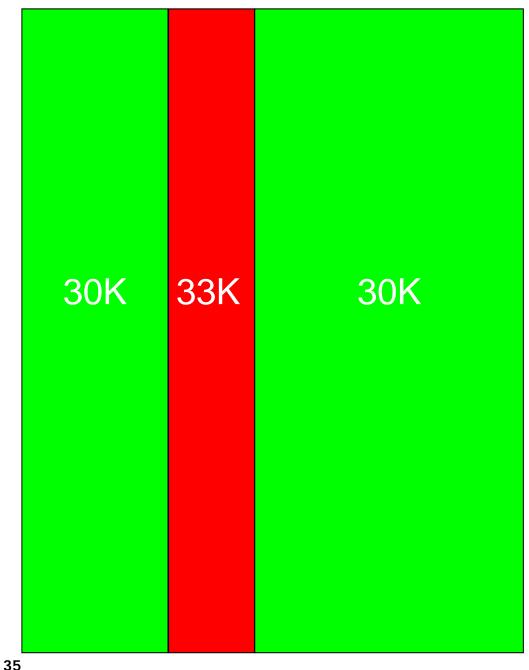
The EOPD for seed:corn price ratios between 0.5 and 1.5 is 29,800 to 36,200 plants/A.

- ✓The plant density of 32,700 plants/A is within \$1.00 of the EOPD for ratios between 0.5 and 1.5.
- In general, silage yield increases as plant density increases.
 - But, a trade-off exists where quality decreases with increasing population.


✓ Thus, the EOPD is the same for corn grown for silage or grain. Lauer © 1994-2010 http://corn.agronomy.wisc.edu

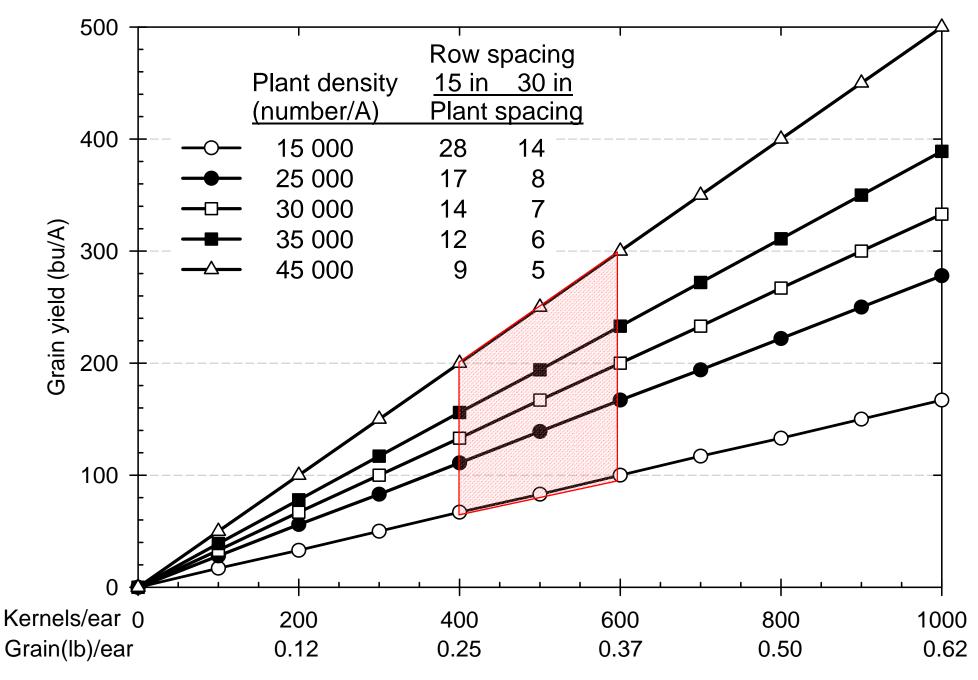
Guidelines: How do you know if an environment is responsive? Let the plants tell you how your field is doing ...

- Tillered v. Runt plants
- Prolific v. Barren shoots
- Big v. Small ears
- Full ear tips v. Nose-back
- Lodging

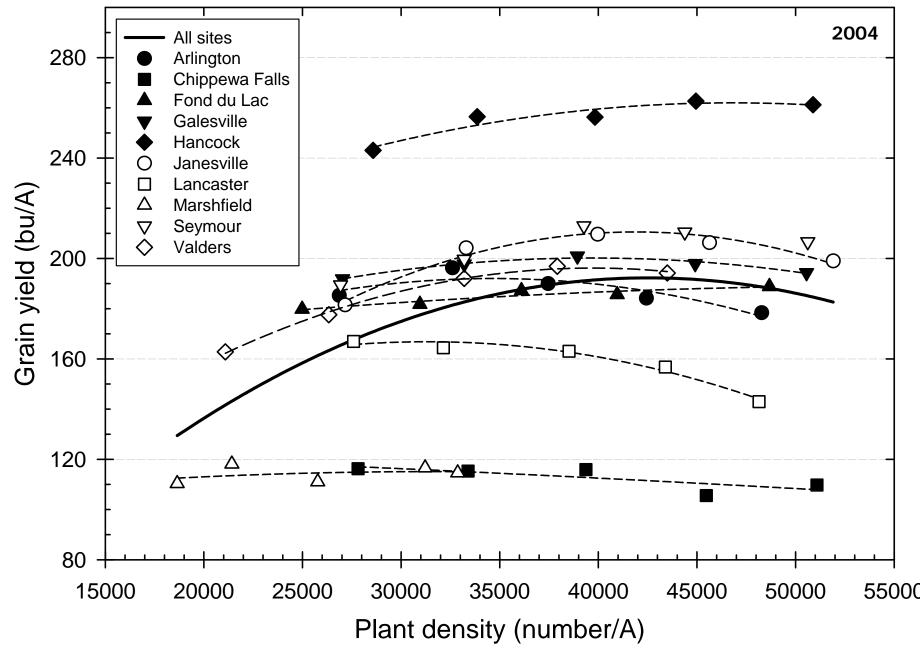

34 http://corn.agronomy.wisc.edu

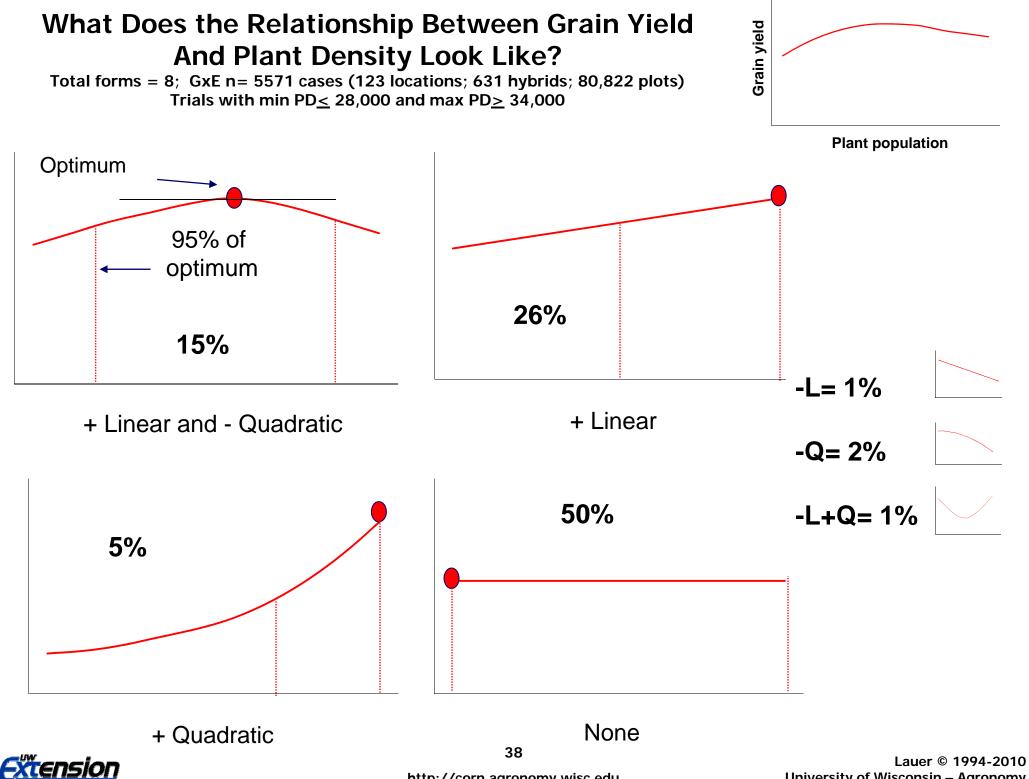
Guidelines: One place to begin is evaluate your plant density for each field ...

- Reference Strips for On-Farm Testing Plant Density
- Field specific
- At least one strip per field. Total of 3-4 strips per farm.
- Increase plant population 10% in one-strip.
 - Plant majority of field to normal plant density
 - ✓ Ideally 2-3 strips per field

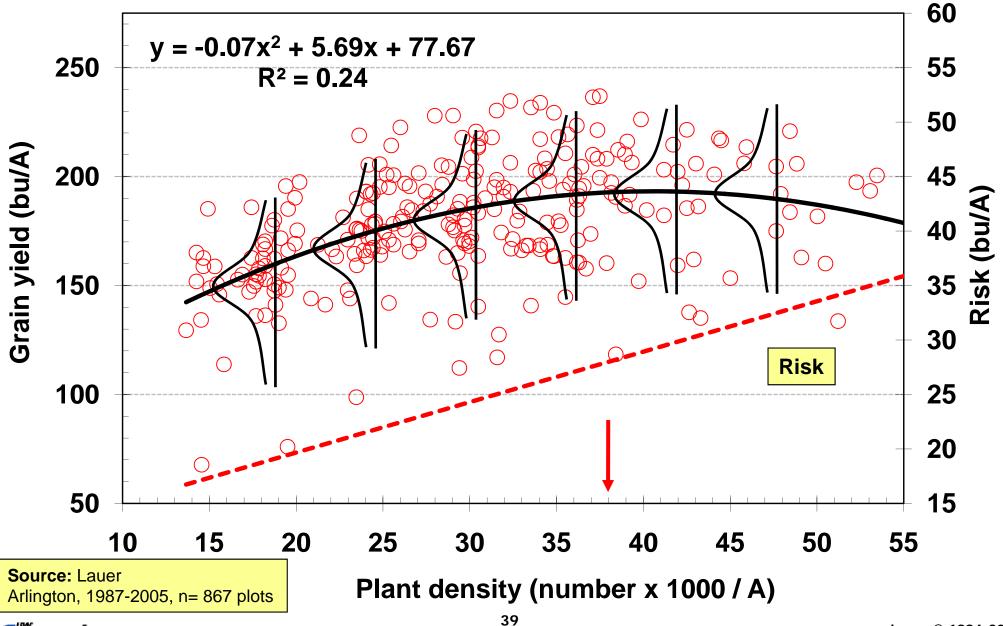


Potential Grain Yield Using Calculated Components


Assume 90,000 kernels/bu and 56 lb/bu; kernel mass = 282 mg


Corn response to plant density in Wisconsin

Varies by location and hybrid (GxE) Concerns: Lodging and Drought


37 http://corn.agronomy.wisc.edu

http://corn.agronomy.wisc.edu

University of Wisconsin – Agronomy

Increasing plant density increases grain yield ... but there is a risk

<u>Extension</u>

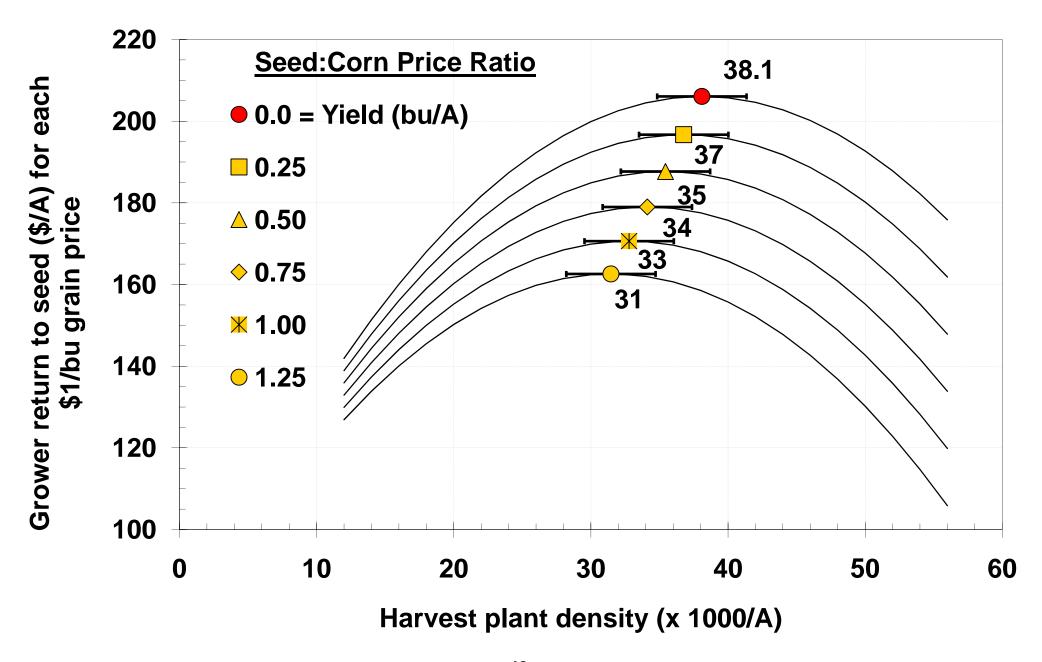
http://corn.agronomy.wisc.edu

Lauer © 1994-2010 University of Wisconsin – Agronomy

Should We Be Concerned About Seed Costs?

Seed costs have dramatically increased over the last few years.

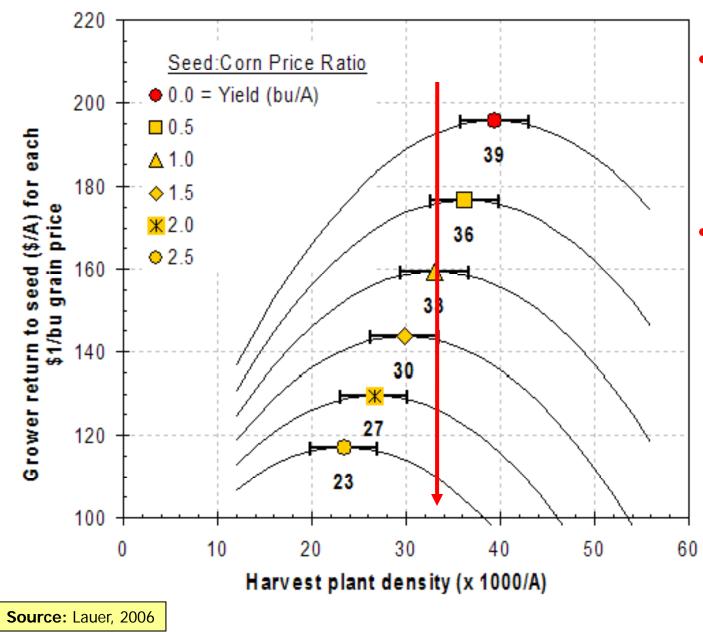
- Transgenic hybrids and technology fees has driven the cost of seed
 In the early 1990s, premium seed would run about \$80 \$100 per bag.
 Premium hybrids cost \$150 \$250 per bag.
- The plant density that maximizes corn yield is increasing over time.
- When grower returns are low, farmers are concerned about the cost of all inputs for corn production
- Ultimately, optimum plant density is affected by both seed cost and corn price.


The Maximum Return to Seed (MRTS) Strategy Price ratio of seed:corn (i.e. \$/1000 seeds ÷ \$/bu corn).

Price	Price of corn (\$/bu)									
\$/80 K bag	\$/1000 seeds	\$1.00	\$1.75	\$2.50	\$3.25	\$4.00	\$4.75	\$5.50	\$6.25	\$7.00
\$0	\$0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
\$40	\$0.50	0.50	0.29	0.20	0.15	0.13	0.11	0.09	0.08	0.07
\$80	\$1.00	1.00	0.57	0.40	0.31	0.25	0.21	0.18	0.16	0.14
\$120	\$1.50	1.50	0.86	0.60	0.46	0.38	0.32	0.27	0.24	0.21
\$160	\$2.00	2.00	1.14	0.80	0.62	0.50	0.42	0.36	0.32	0.29
\$200	\$2.50	2.50	1.43	1.00	0.77	0.63	0.53	0.45	0.40	0.36
\$240	\$3.00	3.00	1.71	1.20	0.92	0.75	0.63	0.55	0.48	0.43
\$280	\$3.50	3.50	2.00	1.40	1.08	0.88	0.74	0.64	0.56	0.50
\$320	\$4.00	4.00	2.29	1.60	1.23	1.00	0.84	0.73	0.64	0.57
\$360	\$4.50	4.50	2.57	1.80	1.38	1.13	0.95	0.82	0.72	0.64
\$400	\$5.00	5.00	2.86	2.00	1.54	1.25	1.05	0.91	0.80	0.71

41

Maximum return to seed at Arlington, WI

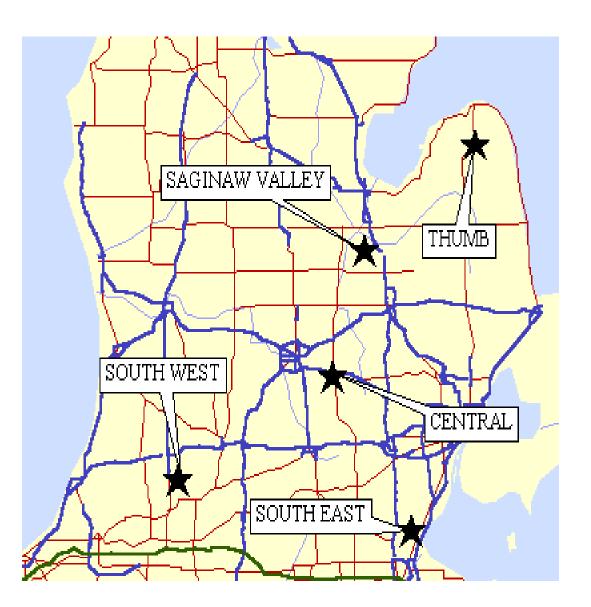

Price Ratio of Seed:Corn (i.e. \$/1000 seeds ÷ \$/bu corn)

Price	e of seed	Price of corn (\$/bu)					
\$/80 K bag	\$/1000 seeds	\$1.00	\$2.00	\$3.00	\$4.00	\$5.00	
\$40	\$0.50	0.50	0.25	0.17	0.13	0.10	
\$60	\$0.75	0.75	0.38	0.25	0.19	0.15	
\$80	\$1.00	1.00	0.50	0.33	0.25	0.20	
\$100	\$1.25	1.25	0.63	0.42	0.31	0.25	
\$120	\$1.50	1.50	0.75	0.50	0.38	0.30	
\$140	\$1.75	1.75	0.88	0.58	0.44	0.35	
\$160	\$2.00	2.00	1.00	0.67	0.50	0.40	
\$180	\$2.25	2.25	1.13	0.75	0.56	0.45	
\$200	\$2.50	2.50	1.25	0.83	0.63	0.50	
\$220	\$2.75	2.75	1.38	0.92	0.69	0.55	
\$240	\$3.00	3.00	1.50	1.00	0.75	0.60	

Source: Lauer, 2006

As Seed:Corn price ratios increase, economic optimum plant density decreases ...

- Symbols represent the economic optimum return to plant density (EOPD).
- Error bars are the low and high ends of the range of profitability (within \$1/A of EOPD) at each seed:corn price ratio.


44

Lauer © 1994-2010 University of Wisconsin – Agronomy

#5 Optimum Planting Configurations – Row spacing

<u>Methods</u>

- 15 total site-years
 (5 Sites x 3 Years)
- 4 hybrids per Site
- 5 populations per site (23000, 26400, 29800, 33200, 36500 plants/A)
- 3 row widths (15, 22, 30 in)
- 2640 total plots

Source: Widdicombe and Thelen, 2002 (AJ 94:1020)

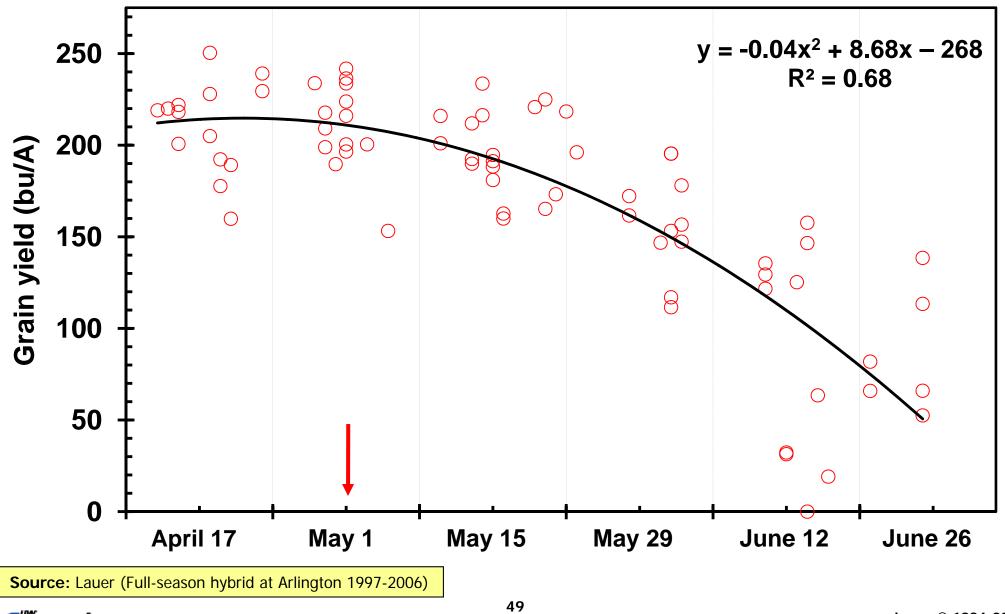
45

Corn response to row width in Michigan 1998-1999. Each value is the mean of 880 plots.

Row width	Yield	Moisture	Stalk Lodging
(in)	(bu/A)	(%)	(%)
30	177 c	19.6 a	1.60 b
22	181 b	19.2 b	1.92 a
15	184 a	19.2 b	1.65 b

Source: Widdicombe and Thelen, 2002 (AJ 94:1020)

#5 Optimum Planting Configurations – Planting date


• Priceless!

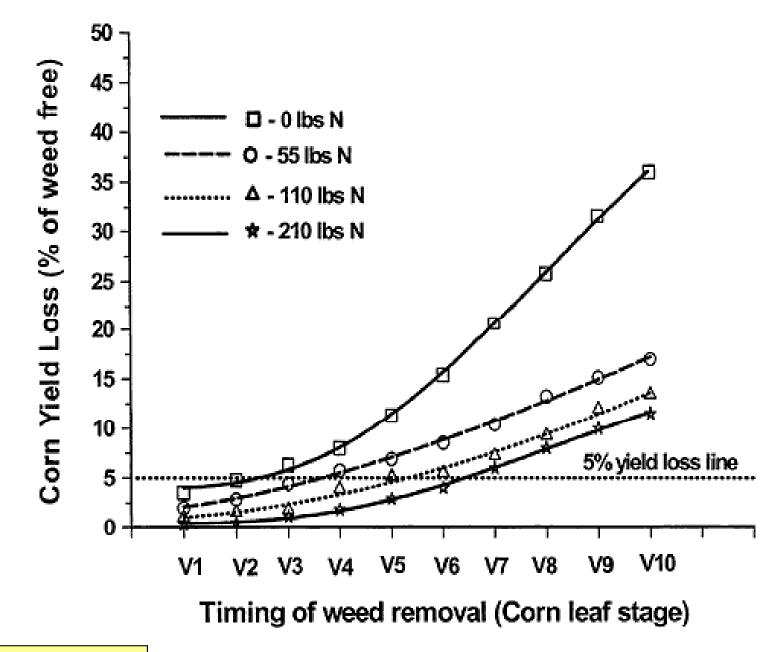
- ✓ "Sets up the season"
- "Double-whammy": late = low yield AND higher moisture
- Focus on seedbed conditions and calendar date rather than soil temperature.
- Follow local extension recommendations
 - Crop insurance requirements
- Disadvantages of early planting
 - ✓ Seedling diseases
 - ✓ Crusting
 - ✓ Late spring frost
 - ✓ European corn borer

Grain yield is decreasing 0.5 bu/A per day on May 15 and accelerates to 2.5 bu/A per day on June 1 ...

<u>Extension</u>

Lauer © 1994-2010 University of Wisconsin – Agronomy

#6 Eliminate Weeds


#6 Eliminate Weeds

- We have many options to control weeds in corn
- Timeliness is key
 - Early season weed competition costs us yield in high yield environments.
- Yield cost of delaying weed control
 - Critical periods of competition
 - ✓ Timing
 - ✓ Weed density

Yield Cost of Delaying Weed Control

http://corn.agronomy.wisc.edu

#7 Nitrogen And Soil Fertility

Lauer © 1994-2010 University of Wisconsin – Agronomy

#7 Soil Fertility

- It's not the place to cut costs.
- Follow extension recommendations
- Soil test and only apply needed nutrients:
 - Use cheapest form of fertilizer per unit of N, P, or K and apply efficiently
 - Use manure and legume credits to reduce purchased fertilizer costs
 - Don't cut back on overall N supplied unless over applying
 - Don't use micronutrients unless soil test recommends

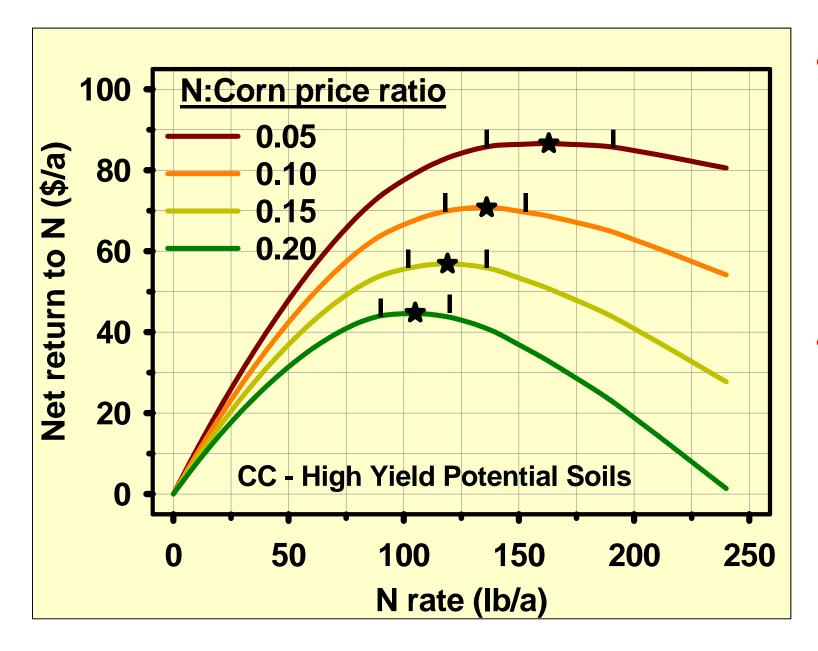
Nit	trogen Guidelines		N:Corn Price Ratio (see other side)				
for	Corn in Wisconsin	0.05	0.10	0.15	0.20		
SOIL	PREVIOUS CROP		LBS N/ACRE (to	otal to apply) ³			
high/very high yield potential soils	Corn, Forage legumes, Legume vegetables, Green manures ⁴ Soybean, Small grains ⁵	165 ¹ 35∎ 90 ² 140 10∎ 60	 35 20= 55 15 00= 30	120 00= 35 100 85= 15	105 90=-120 90 70=100		
medium/low yield potential soils	Corn , Forage legumes, Legume vegetables, Green manures ⁴ Soybean, Small grains ⁵	 20 00■ 40 90 75■ 10	105 90■120 60 45■-70	95 85-= 0 50 40-=-60	90 80-=-100 45 35-=-55		
sands/ Ioamy sands	Irrigated— All crops ⁴ Non-irrigated— All crops ⁴	215 200■230 I20 100■140	205 90=-220 05 90=- 20	195 80=-2 0 95 85-= 0	190 175=-200 90 80-=-100		
	Maximum return to N (MRTN) rate. ² Rang vegetables, animal manures, green manures.				orage legumes, legume		

N:Corn Price Ratio

Price of N	Price of corn (\$/bu)								
(\$/lb N)	3.00	3.50	4.00	4.50	5.00	5.50	6.00	6.50	7.00
0.45	0.15	0.13	0.11	0.10	0.09	0.08	0.08	0.07	0.06
0.50	0.17	0.14	0.13	0.11	0.10	0.09	0.08	0.08	0.07
0.55	0.18	0.16	0.14	0.12	0.11	0.10	0.09	0.08	0.08
0.60	0.20	0.17	0.15	0.13	0.12	0.11	0.10	0.09	0.09
0.65	0.22	0.19	0.16	0.14	0.13	0.12	0.11	0.10	0.09
0.70	0.23	0.20	0.18	0.16	0.14	0.13	0.12	0.11	0.10
0.75	0.25	0.21	0.19	0.17	0.15	0.14	0.13	0.12	0.11
0.80	0.27	0.23	0.20	0.18	0.16	0.15	0.13	0.12	0.11
0.85	0.28	0.24	0.21	0.19	0.17	0.15	0.14	0.13	0.12
0.90	0.30	0.26	0.23	0.20	0.18	0.16	0.15	0.14	0.13
0.95	0.32	0.27	0.24	0.21	0.19	0.17	0.16	0.15	0.14
1.00	0.33	0.29	0.25	0.22	0.20	0.18	0.17	0.15	0.14

Some guidelines for using ranges

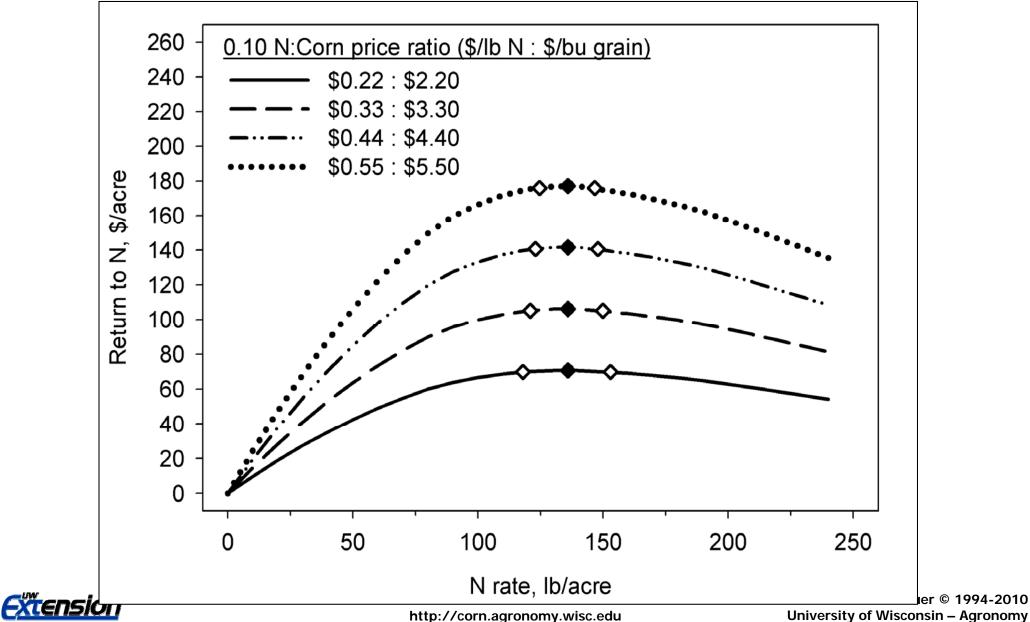
Situation	Portion of Range to Use				
	low	mid	high		
> 50 % residue cover at planting			\checkmark		
Previous crop is small grain on medium/fine textured soils	•	•			
100.% of N is from			\checkmark		
100 % of N is from organic sources	Plus up to 20 lb N/a in start fertilizer may be applied				
If there is a likelihood of	\checkmark				
residual N (carryover N)	Or use PPNT				



Some guidelines for using ranges

Situation	Portion of Range to Use				
	low	mid	high		
Medium & fine-textured soils with < 2.0 % OM			\checkmark		
Medium & fine-textured soils with > 10.0 % OM	\checkmark				
Course-textured soils with < 2.0 % OM			\checkmark		
Course-textured soils with > 2.0 % OM					

Profitable N Rates



 A range of N rates can produce profitable yields

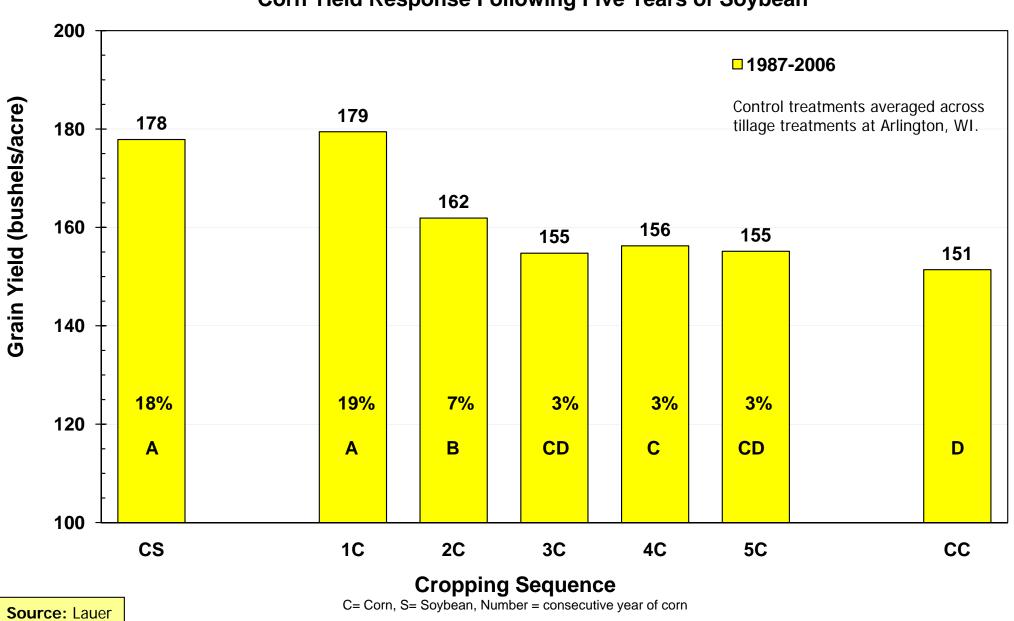
 Economics clearly drives the profitable N rate

Effect of price level on profitable range

University of Wisconsin – Agronomy

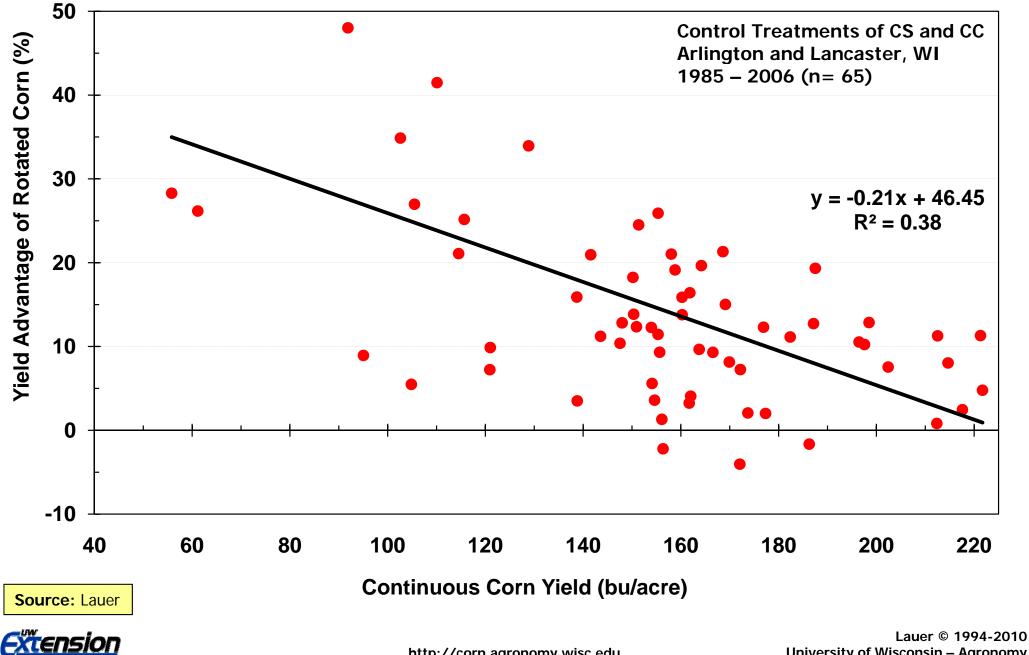
	—— N:Corn Price Ratio (\$/lb N:\$/bu) ——					
Soil and Previous Crop	0.05	0.10	0.15	0.20		
		– Ib N/a (To	tal to Apply)			
HIGH/ V.HIGH YIELD POTENTIAL SOILS						
Corn, Forage legumes, Vegetable legumes, green manures	165 (135-190)	135 (120-155)	120 (100-135)	105 (90-120)		
Soybean, Small grains	140 (110-160)	115 (100-130)	100 (85-115)	90 (70-100)		
MEDIUM/LOW YIELD POTENTIAL SOILS						
Corn, Forage legumes, Vegetable legumes, green manures	120 (100-140)	105 (90-120)	95 (85-110)	90 (80-100)		
Soybean, Small grains	90 (75-110)	60 (45-70)	50 (40-60)	45 (35-55)		
IRRIGATED SANDS & LOAMY SANDS						
All crops	215 (200-230)	205 (190-220)	195 (180-210)	190 (175-200)		
Non-Irrigated Sands & Loamy Sands						
All crops	120 (100-140)	105 (90-120)	95 (85-110)	90 (80-100)		

#8 Crop
Rotation


#8 Crop Rotation

- "Easiest yield you can get."
- "The gift that keeps on giving."
- Corn yield increases 10-19% when rotated with soybean.
- The rotation effect lasts at most two years.
 - Depends upon the length of the break
 - □ 2 or more break years → Yield of 2nd year corn > continuous corn.
 - □ 1 year break → Yield of 2nd year corn = continuous corn.
- The rotation effect is even more dramatic in stressful years.

The rotation effect can last up to two years increasing corn grain yield 10 to 19% for 1C and 0 to 7% for 2C ...


Corn Yield Response Following Five Years of Soybean

<u>Extension</u>

http://corn.agronomy.wisc.edu

Lauer © 1994-2010 University of Wisconsin – Agronomy

Rotation is more important in stress environments ...

http://corn.agronomy.wisc.edu

University of Wisconsin – Agronomy

Yield Contest Winners – DO NOT use Crop rotation, but DO use High Plant Densities

Ken Beaver, Sterling, NE

- 2001: 319 bu/A
- 39,000 plants/A

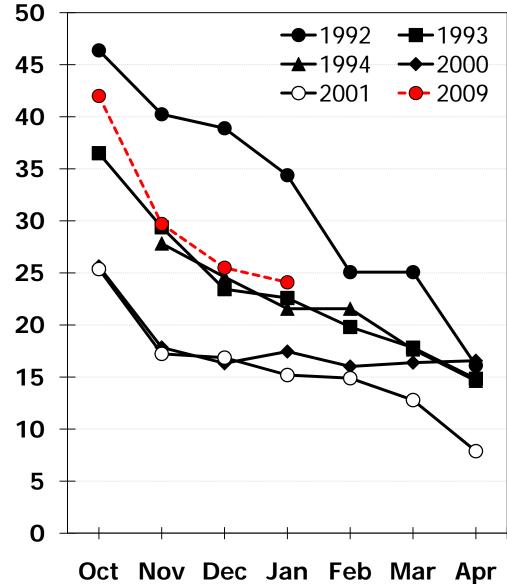
Herman Warsaw, Saybrook, IL

- 1985: 370 bu/A
- 20+ years continuous corn
- 36,000 plants/A

Francis Childs, Manchester, IA

- 2002 World Record = 442 bu/A
- 30+ years continuous corn
- 45,000 plants/A

#9 Harvest Carefully

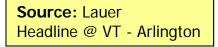


#9 Harvest and Store Carefully

- Trade-off between field losses and drying cost
 - ✓ Recommended to harvest between 20 and 25% moisture
- For safe storage, drying is usually required (< 15%)

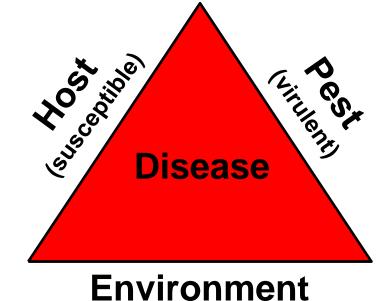
Grain moisture (%)

#9 Disease Management


- "What is good for the crop is good for the pest."
- Disease management goal is to improve corn canopy leading to yield increase and disease decrease.
- Genetic resistance is the cheapest control
- Scout for these in particular...
 - ✓ Anthracnose
 - ✓ Northern Corn Leaf Blight
 - Diplodia
 - ✓ Fusarium/Gibberella
- Foliar applied fungicides ?
 - ✓ Headline
 - ✓ Quadris

Corn and Fungicide in Wisconsin

Year	Previous Crop	Tillage	No Fungicide	With Fungicide	Fungicide Increase	Did it pay?
				bushels per acr	`е	
2007	Corn	No-till	216	222	6	?
	Soybean	No-till	203	230	27*	Yes
	Wheat	No-till	205	210	5	No
	Soybean	No-till	206	208	2	No
2006	Soybean	Chisel	226	229	3	No
	Corn	Chisel	214	217	3	No
	Corn	Chisel	227	227	0	No
2005	Corn	Chisel	181	186	5	No
	Soybean	Chisel	199	211	12	?
	Soybean	Chisel	212	213	1	No
2004	Soybean	Chisel	200	211	11*	Yes



<u>Extension</u>

Guidelines for Using a Fungicide on Hybrid Corn

• Spraying in 2008? Consider:

- hybrid susceptibility,
- ✓ disease pressure at VT,
- ✓ weather conditions at VT,
- previous crop,
- ✓ the amount of crop residue present ,
- \checkmark fungicide and application cost ,
- ✓ grain price, and
- ✓ directions & restrictions on label

(Favorable)

application may be warranted if disease is present on the third leaf below the ear leaf or higher on 50

hybrids.

 With <u>intermediate</u> hybrids, a fungicide need only be applied if conditions are favorable for disease development

percent of the plants at tasseling.

In general, a fungicide application is

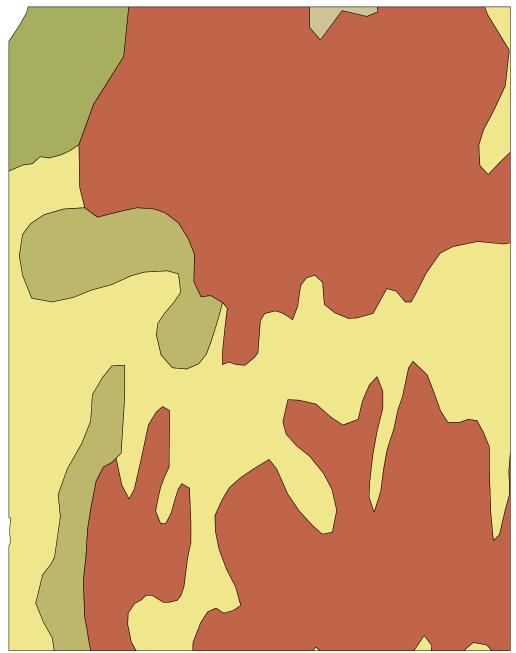
not recommended on resistant

• On susceptible hybrids, a fungicide

- Spray if disease is present on the third leaf below the ear leaf or higher on 50 percent of the plants at tasseling, and
- ✓ the weather is warm and humid, and
- the field has a history of Gray Leaf Spot and/or Anthracnose, and
- ✓ >35 percent corn residue is present.

#10 Information Management

http://corn.agronomy.wisc.edu


Lauer © 1994-2010 University of Wisconsin – Agronomy

#10 Information Management What do we do with all these yield maps?

Precision farming and yield maps are ~15 years old.

- Crop yields typically vary over space and time. This in-field variability is the focus of precision agriculture – how to manage it, diminish it, or overcome it (Lamb, 1997).
- ✓ Tremendous costs
 - Infrastructure / Equipment / Data
 - People / Time
- ✓ Generated lots of data
- To successfully implement variable rate technology, we need <u>predictable</u> patterns of grain yield variability.
- <u>Bottom line</u>: Time is required before yield maps are useful.

✓ "Farming for your sons and daughters."

73

So far little economic benefit seen with yield maps ...

Equipment

- Sensitive
 - Requires frequent calibration ("GIGO")

Sophisticated

- Requires time to learn electronic skills in order to operate equipment and software.
- Requires both yield monitor AND GPS data.

Data

- Computer resources
- Management
- Software for Analysis
 - Sophisticated and complicated

- Lack of local technical assistance
- Decision making
 - Uncertainty for recommendations
- Most benefit is to people in the field rather than absentee owner operators who do little or no field work.
 - Data requires interpretation (notes)

74 http://corn.agronomy.wisc.edu

(റ

Lauer © 1994-2010 University of Wisconsin – Agronomy

Challenges with Site Specific Management and Prescription Farming

Ultimately the goal is to make a profit from your predictions

To make a good prediction you need to variance estimates (requires a minimum of three crop years).

• The size of the cell is important. It depends on:

Size of equipment (less important with modern variable rate technology)
 Proper calibration of yield monitoring and mapping equipment
 The number of pixels (points) that estimate yield in each cell

Yield is the ultimate integrator of the environment

✓ Soybean yield is not a good predictor of corn yield.

 Long term commitment: After a management change is made, time is required to evaluate the change (minimum of 3 crop years) before further changes can be tested.

What crop management decisions can be managed in responsive environments?

Maybe

- Hybrid
- Plant density
- Fertilizer: N, P, K, micro, starter, lime

Pesticide

✓ Fungicide

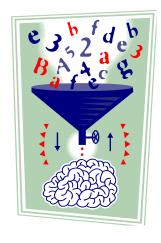
✓ Herbicide

<u>No</u>

- Rotation
- Tillage
- Row spacing
- Seed treatment
- Planting date
- Harvesting
- Drying

What do we do with all these yield maps?

- Keep collecting them ("Let your fields tell you what is happening")
 - Associate GIS data with yield and moisture measurements
 - ✓ Collect other agronomic notes
 - Invest in storing and managing data until you have enough years
- Future crop yield gains will likely occur with agronomic management decisions within fields ("The Last Frontier").



http://corn.agronomy.wisc.edu

Ways To Increase Grower Return

- Substitute information for more expensive purchased inputs:
 - ✓ Hybrid performance data
 - ✓ Soil tests
 - ✓ Manure analysis
 - ✓ Pest scouting
 - ✓ Crop consultant
 - ✓On-farm trials??

Agronomic and economic consequences of corn management decisions in WI

1. Weather / Environment

2. Hybrid

- Top to bottom ranking = 0 to 30% change
- Presence or absence of genetic traits = 0 to 100% change

3. Date of Planting

- ✓ May 1 to June 1 = 0 to 30% change
- Also need to add moisture penalty

4. Pest Control

- Timeliness
- ✓ Weeds > Insects > Diseases
- ✓ Good v. Bad = 0 to 100% change

5. Plant Density

✓ 32,000 to 15,000 plants/A = 0 to 22% change

6. Rotation

- Continuous v. Rotation = 0 to 30% change
- ✓ Greater consequence in 'stress' environments

7. Soil Fertility

- ✓ 160 v. 0 lb N/A = 20 to 50% change
- 8. Harvest Timing
 - ✓ Oct. 15 to Dec. 1 = 0 to 20% change

9. Tillage

- ✓ Chisel v. No-till = -5 to 10% change
- ✓ No-till = energy savings
- Cultivation: Yes v. No = 0 to 10% change

10. Row Spacing

✓ 30-inches to 15-inches = 0 to 5% change

Summary

- Grain yield increases are occurring faster in Corn Belt counties outside of Wisconsin.
- The most expensive corn crop ever planted occurred in 2009.
- Optimum plant populations for grain yield are higher than currently recommended levels.
- Pay attention to seed costs
 - ✓ When the seed price difference between two hybrids is greater than \$50 per bag, it is unlikely that the more expensive hybrid will pay for itself (grain price = \$3.50 per bu).

The best we can predict is 16 bu/A. Typical gain we can predict is 7 bu/A.

Thanks for your attention! Questions?

January 28-29, 2010 Kalahari Resort Wisconsin Dells, WI

