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We investigate selectivity bias in the evaluation of biotech hybrid productivity.The analysis is applied to
experimental data on Wisconsin corn yields from 1990 to 2010. Relying on a Heckman-like factor that
accounts for selectivity, we find evidence of selection bias, indicating that some of the observed yield
advantage associated with GM hybrids can be attributed to their conventional genes. We document
how the rising market concentration of biotech firms has contributed to increasing selectivity bias in
corn yield. The impact, however, is offset by the negative effect of the rising adoption rate of GM corn
on selectivity bias.
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Genetic improvement has been a major source
of agricultural productivity growth (Alston and
Pardey 1996). For example, in the United
States, corn yield has increased from 28.9
bushels per acre in 1940 to 72.4 bushels per acre
in 1970, and then to 152.8 bushels per acre in
2010 (USDA-NASS 2011). Genetic improve-
ments have been major contributing factors to
this growth, and are considered to have con-
tributed between 50-60% of corn yield gains
during the 20th century (Duvick 1992, 2005).

Two innovations in corn breeding have
played a key role in the crop’s growth. The
first was the introduction of hybrid corn in
the 1930s. Corn hybrids benefited from het-
erosis (or hybrid vigor) that generated large
gains in corn productivity (Griliches 1957,
1960; Fernandez-Cornejo 2004; Springer and
Stupar 2007). The widespread adoption of corn
hybrids from the 1930s also led to a profitable
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corn seed industry where private firms dom-
inate the production and distribution of corn
seed (Fernandez-Cornejo 2004). The second
innovation was the introduction of genetically
modified (GM) traits embedded in seeds,which
took place in the 1990s following the develop-
ment of gene transfer technology.

Historically, genetic selection has focused
on traditional genes that have been selected
mostly through “trial and error”, in which
case the genes contributing to higher yields
were not explicitly identified. With the advent
of biotechnology, GM genes (and their func-
tions) are now identified, patented1 and “trans-
ferred” (often across species) to a targeted
organism. The use of gene-transfer technol-
ogy offers good prospects for additional pro-
ductivity growth in agriculture (Herdt 2006;
Bouis 2007; Qaim 2009; James 2010; National
Academies 2010; Ronald 2011). The adop-
tion of GM corn hybrids has been rapid in
the United States: in 2011, 88% of U.S. corn
acreage was planted to hybrids with at least
one GM trait, and 49% of the corn acreage was
planted to hybrids with at least two GM traits
(USDA-ERS 2011).

1 The patenting of seeds followed the development of strong
intellectual property rights applied to living organisms, as estab-
lished by the 1980 U.S. Supreme Court case Diamond v.
Charkrabarty.
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Genetically modified genes do not work in
isolation. Rather, they interact with and com-
plement traditional genes, which helps the GM
crops become more effective in their environ-
ment (e.g. by reducing pest damages). How-
ever, how much of the observed productivity
improvement in GM crops can be attributed
to GM genes, and how much to traditional
genes? Answering this question involves com-
plex issues because, while there are relatively
few GM genes, many traditional genes in many
different combinations contribute to corn pro-
ductivity.2

Our paper compares the quality of tradi-
tional genes contained in GM crops to the
quality of traditional genes contained in con-
ventional crops. In general, higher quality
germplasm leads to better performing seeds.
Under competition, one expects firms to pro-
vide an efficient level of quality. However,
a multiproduct monopolist has an incentive
to offer sub-optimal levels of quality to low-
valued consumers (e.g. Mussa and Rosen 1978;
Tirole 1988, p. 150). Therefore, the provision
of quality can be affected by market struc-
ture. In the case of GM seeds, biotech firms
own patents giving them legal monopoly rights
over the GM genes. Over the last 20 years,
these biotech firms have been acquiring firms
who previously owned basic hybrid germplasm
and distribution networks (e.g. Alston and
Venner 2002; Fernandez-Cornejo 2004;Wright
and Pardey 2006; Howard 2009; National
Academies 2010). The corn seed industry is
now dominated by four large biotech firms,
all of which own subsidiary seed companies
(Fernandez-Cornejo 2004; Shi, Chavas and
Stiegert 2010). These companies are: DuPont
(Pioneer International), Monsanto, Syngenta,
and Dow AgroSciences.3 The market share of
these 4 biotech firms in the U.S. corn seed
market has increased over the last 15 years,
reaching 86% in 2010.4 While Pioneer and

2 As pointed out by an anonymous referee, observing the effects
of conventional germplasm can be difficult. Indeed, given the esti-
mated 42,000 to 56,000 genes present in corn,evaluating the specific
and joint effects of each gene is a complex task.

3 Pioneer has been breeding corn seed since 1921 and owns
a large bank of genetic material, but was not strong in biotech-
nology traits. Its 1999 merger with DuPont was designed to
address this problem (King and Schimmelpfennig 2005). Mon-
santo was a chemical company which acquired Asgrow, DeKalb
and Holden’s Foundation Seeds between 1997 and 2000 to obtain
germplasm into which it could insert biotechnology traits (King
and Schimmelpfennig 2005). Since then, mergers and acquisitions
have led to further structural changes and increased concentration
in the corn seed industry (see Shi, Chavas and Stiegert 2010; Nolan
and Santos 2012).

4 This ratio is compiled using statistics reported by each firm’s
annual report; it only measures the total market share of the

Monsanto each control about 35% of the corn
seed market, Monsanto dominates the GM
trait market; in 2009 their market share was
over 80% (Moschini 2010). Such concentrated
seed markets are associated with an increase
in control over the quality of the germplasm.
Chataway and Tait (2000) pointed out that part
of Monsanto’s incentives to acquire seed com-
panies was to have access to elite germplasm
because,“The Monsanto … gene was not orig-
inally inserted in the best variety.” Unfortu-
nately, we do not have direct observations on
the quality of basic germplasm used in biotech
and conventional seeds. However, it is possible
to arrive at an indirect evaluation of the qual-
ity of the germplasm managed by biotech and
seed companies.

In this paper, we rely on experimental corn
yield data to provide indirect evidence on the
management of germplasm quality in the U.S.
corn seed industry. We develop a method to
investigate whether the quality of the tradi-
tional germplasm is the same for GM seeds
as it is for conventional seeds. We use argu-
ments concerning “selectivity bias” presented
in the econometric literature (as pioneered by
Heckman, 1979), and adapt them to the eval-
uation of GM technology. Selection bias can
arise when data are generated in a non-random
fashion. Examples include self-selection, pre-
screening and the general evaluation of a
sub-sample that excludes some members of
the population of interest. Selectivity issues
are relevant when analyzing labor, migra-
tion and marketing decisions (e.g. Heckman
1979; Goetz 1992).5 In these cases, selectivity
arises when individual performance is evalu-
ated based on a sub-sample that is not repre-
sentative of the population.

This paper investigates the possible pres-
ence of selectivity bias when evaluating GM
seed productivity. The idea is simple: in the
absence of selectivity bias, the quality of the
germplasm does not differ between GM seeds
and conventional seeds, implying that,for given
agro-climatic conditions and management, any
productivity difference between GM and con-
ventional crops can be attributed to the GM
genes. But “selectivity” would arise if GM
genes were added more frequently to “high

integrated firms and should not be interpreted as the commonly
referred to four-firm concentration ratio (CR4). While some of the
integrated firms have been among the top 4 firms in the industry
for some years, not all of them were so highly-ranked during the
study period.

5 See Vella (1998) for a review of this literature and its
extensions.
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quality” germplasm. In that case, seeds with
GM traits would appear to be more produc-
tive, but part of this increase would not be
due to GM genes, but rather to the higher
quality of the underlying germplasm. There-
fore, observed yield differences between GM
and conventional seeds are subject to “selec-
tivity bias”.The conceptual contribution of this
paper is to show how Heckman’s approach to
selectivity bias can be adapted to evaluating the
productivity of GM technology.

We also make an empirical contribution to
the literature by applying the methodology to
experimental data on GM corn yield. We eval-
uate the separate effect on yield of GM genes
versus traditional germplasm using experimen-
tal data on Wisconsin corn yields from 1990 to
2010. Our study provides a refined empirical
investigation of the relative effects that both
GM and traditional genes have on agricultural
productivity.

The empirical findings are timely and rele-
vant in that we uncover evidence indicating
that part of the observed yield gains from
biotech seeds arise because patented GM traits
are being inserted into superior germplasm.
The analysis finds that such selectivity effects
vary between different GM genes. We also
demonstrate that selection bias in corn yields
has been affected by the rising market concen-
tration of biotech firms and the rate of GM
adoption. Moreover, we show that selectivity
effects become stronger as the dominance of
biotech firms in the seed industry increases,
but decline with increased GM adoption rates.
The analysis indicates the importance of con-
ventional genes in evaluating the productivity
effects of biotech genes, and stresses the role
played by traditional genetic selection in agri-
cultural productivity improvements. All of this
has important implications for research pol-
icy. It appears that, even given the widespread
adoption of GM corn in the United States,
traditional breeding continues to generate sig-
nificant increases in agricultural productivity.
Given the important part that traditional plant
breeding continues to play in increasing agri-
cultural productivity, it is possible that both the
current emphasis on investment in biotech,and
the patent protection extended to GM traits
should be reconsidered.

Economics of Selectivity Bias in Biotech
Seeds

Consolidation in the seed industry has been
driven by a number of factors: exploiting asset

complementarities; mitigating contractual
hazards; seeking market power; and/or regu-
lations (e.g. Kalaitzandonakes and Bjornsen
1997; Rausser, Scotchmer and Simon 1999;
Fulton and Giannakas 2001; Graff, Rausser
and Small 2003; Just, Alston and Zilberman
2006; Marco and Rausser 2008; Shi 2009).
The presence of high fixed costs and low
variable costs associated with biotechnology
indicates a need to price above marginal
costs to support high levels of research and
development investment (Wright and Pardey
2006). Consolidation has also been driven by
the need for access to elite germplasm (Wright
and Pardey 2006; Chataway and Tait 2000).
New and valuable traits cannot generate value
unless they are incorporated in commercial
hybrid lines sold to farmers. To sell their
products and gain market share, biotech firms
have the incentive to add their patented GM
traits to very good basic germplasm. Since the
marginal cost of incorporating a trait into a
hybrid is small, the earnings from licensing
a GM trait are almost entirely a function of
market size, as a large marketing network
complements a portfolio of traits (Rausser,
Scotchmer and Simon 1999).This helps explain
how large biotech firms expand and integrate
into retailing by purchasing regional seed
companies.

Similar to the multi-product monopolist,
integrated biotech/seed companies that can
produce both conventional and biotech seeds
are in a position to manage the quality of the
germplasm used for GM seeds. As pointed
out by Tirole (1988, p. 150), these compa-
nies have an incentive to provide suboptimal
germplasm quality to low-valued consumers
(in this context, farmers using conventional
seeds) while providing high quality germplasm
to high-valued consumers (farmers using GM
seeds).6

To illustrate such a decision process, we fol-
low Mussa and Rosen (1978) and consider
the case where each farmer buys one unit
of seed of quality q. There are two types of
farmers (“type b” and “type c”), each type dif-
fering according to his/her valuation of quality.
Assume that a farmer of“type b”receives gross
benefit Bb = θbqb, while a farmer of “type c”

6 Here, high-value and low-value farmers are defined according
to each farmer’s net willingness to pay for GM seeds. For example,
when GM seeds help reduce pest damage,high-value farmers would
be the ones facing more severe pest infestation problems on their
farm. Alternatively, farmers facing low pest infestation may have
little incentive to buy GM seeds: they would be low-value farmers
likely to purchase conventional seeds.
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receives gross benefit Bc = θcqc, with θb > θc.
This assumption reflects heterogeneity in the
marginal benefit of quality among farmers:
“type b” farmers receive a higher incremental
benefit of quality than do “type c” farmers (e.g.
due to different agro-climatic conditions).7 Let
nb and nc be the number of farmers of “type b”
and “type c”, respectively. Let C(q) denote the
unit cost of producing quality q, where C(q) is
increasing and convex in q.

Three scenarios are of interest. First, con-
sider the case of a social planner trying to max-
imize aggregate welfare: nc [θcqc − C(qc)] +
nb[θbqb − C(qb)]. Assuming differentiability
and interior solutions,the first-order conditions
for an efficient choice of quality are:

(1a) θb = C′(qb),

and

(1b) θc = C′(qc)

where C′(q) = ∂C/∂q denotes the marginal
cost of quality. Equations (1a) and (1b) pro-
vide the standard efficiency results stating that
marginal benefit equals marginal cost. Second,
consider the case of a perfectly-discriminating
monopolist who can charge different prices to
different buyers. This monopolist would offer
each farmer the socially-efficient quality, but
would extract all economic surplus by charg-
ing a price higher than θc in (1b) for the lower
quality level (Mussa and Rosen, 1978, p. 304).

Third, consider the case of a monopo-
list who offers all potential buyers the same
price-quality combination. This is a situation
of second-degree price discrimination, where
buyers are heterogeneous but the monopo-
list can still price discriminate by inducing
different buyers to self-select into buying price-
quality combinations that increase monopoly
profit (Tirole, 1988, p. p. 143). Denote by P(q)
the price charged by the monopolist for quality
q.As shown by Mussa and Rosen (1978,p. 305),
the monopolist’s price-quality offers must sat-
isfy P(qc) = θcqc and P(qb) = θcqc + θb [qb −
qc]. In our example, such offers ensure that the
two types of farmers are self-separated, leading
only high-valued “type b” farmers to buy GM
seeds. Then, total profit is nc [θcqc − C(qc)] +

7 For example,“type b” farmers (biotech seed farmers) may face
higher pest pressure than “type c” farmers (conventional farmers),
implying that biotech farmers would benefit more from a “high
quality” seed that offers some protection against yield loss from
pest damages.

nb[θcqc + θb[qb − qc] − C(qb)], and the asso-
ciated first-order conditions for interior solu-
tions are:

(2a) θb = C′(qb),

and

(2b) θc + (nb/nc)[θc − θb] = C′(qc).

Equation (2a) is the same as (1a), and shows
that the discriminating monopolist provides
the efficient level of quality to “type b” farm-
ers. But given θb > θc, comparing equation (2b)
with (1b) implies that “type c” farmers face
lower and suboptimal levels of quality. The
extent of sub-optimality depends on the rel-
ative number of farmers of each type, nb and
nc. Here, “type c” farmers could be those who
buy conventional seeds; they are induced to
buy lower quality seeds to improve the abil-
ity of the monopolist to charge higher prices
to “type b” farmers who purchase GM seeds.
In this case, the monopolist would choose
suboptimal quality for seeds supplied to the
low-valued conventional farmers.

While the analysis presented above is rel-
atively simple,8 it is relevant in the presence
of heterogeneity of benefits generated by GM
technology across farms. For example, the level
of pest infestation often varies across farms due
to agro-climatic conditions and site-specific
pest population dynamics. In this context,when
a GM trait is used to control a particular pest,
the willingness-to-pay for this GM trait would
vary across farms. Under second-degree price
discrimination and the legal monopoly granted
by a patent, biotech and seed firms would then
have an incentive to create quality differences
(besides GM genes) between traditional seeds
and GM seeds. Such quality differences would
generate selectivity issues in the productivity
evaluation of GM hybrids.

Besides seeking evidence of selectivity bias,
we are also interested in investigating factors
that may contribute to such bias. On a pri-
ori grounds, there are two situations where
selectivity issues would not be expected. The
first situation is one of perfect competition
in seed markets. Since intellectual property
rights (such as patents, plant variety protec-
tion certificates and trade secrets) grant legal
monopoly to these rights holders, the extreme
case of perfect competition would require the

8 For a more general discussion, see Mussa and Rosen (1978).
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absence of any such rights, implying open
access to the germplasm. Such open access
would prevent any firm from implementing a
selectivity scheme when matching GM with
conventional genes. In fact, the implementa-
tion of a selectivity scheme by any firm requires
some level of control over the germplasm. In
this case,selectivity issues would be more likely
to arise in the presence of imperfect com-
petition, which generates one of our testable
hypotheses: selectivity bias is positively asso-
ciated with increased market concentration.
Indeed, while the ownership of technologies
associated with GM seeds is now concentrated
in four biotech firms, these firms have also
acquired a significant amount of elite basic
inbred germplasm (Wright and Pardey 2006).

Second, selectivity issues would not arise
if all farmers possessed adopted GM seeds.
In this case, all seeds would be GM seeds,9
the market for conventional seeds would dis-
appear, and there would be no prospect for
any firm to implement a selectivity scheme
between GM and conventional genes.Thus, the
likelihood of finding selectivity issues would
decrease with the adoption rate of GM tech-
nology,which generates another of our testable
hypotheses: selectivity bias is negatively asso-
ciated with the adoption of GM technology.

Evaluating Selectivity Bias in Genetic
Changes

Agricultural production involves three sets of
inputs: biological organisms and their genet-
ics G; environmental inputs V; and managerial
inputs M. The technology is represented by the
following production function:

(3) y = f (G, V, M)

where y denotes agricultural output. The
genetic inputs include two types of genes,
G = (Gb, Gc), where Gb are “biotech genes”
introduced using gene-transfer biotechnol-
ogy, and Gc denotes “conventional genes”
that are part of the traditional breed-
ing germplasm. The environmental effects,

9 This scenario is hypothetical.There are at least two reasons why
the adoption of GM corn hybrids would not reach 100%: the pres-
ence of organic farming where planting GM seeds is not allowed;
and regulatory-mandated refuge requirements where some per-
centage of acres must be planted in conventional hybrids (to slow
the development of insect resistance to GM toxins). Still, this hypo-
thetical scenario can be thought as approximating what would
happen when the market share of GM seeds becomes “large”.

V, include agro-climatic conditions, weather
effects (e.g. rainfall, temperature) and pest
population. Finally, the management effects,
M, include crop rotation, fertilizer/feed use,
pest/disease management, etc. Note that (3)
represents a generic agricultural production
technology, allowing for possible interactions
among genes, and between genotype, environ-
mental conditions and management factors.

Equation (3) provides the information
needed to evaluate yield. For example, con-
sider a genetic change from Gt to Gt′ , between
time t and time t′. Then, conditional on (V, M),
the associated change in yield can be mea-
sured by:

�y(Gt′ , Gt ; V, M)(4)

= f (Gt′ , V, M) − f (Gt , V, M).

Note that �y(·) in (4) is the marginal pro-
ductivity effect (measured in terms of agricul-
tural output) associated with a genetic change
from Gt to Gt′ . Conditional on (V, M), hav-
ing �y(·) > 0 (< 0) in (4) means that switch-
ing from genes Gt to genes Gt′ increases
(decreases) production by �y(·) units of out-
put. Such results apply to general changes
in biotech genes Gb, as well as conventional
genes Gc.

As discussed in the introduction, there are
few biotech genes Gb and each can be identified
by patents and trademarks held by the biotech
firm that generated them. In contrast, conven-
tional genes Gc are numerous and evolve over
time in complex ways depending on natural
selection and/or genetic selection implemented
by farmers and plant breeders. As a result, the
majority of the vast number of Gc are unob-
served, which makes it more difficult to evalu-
ate their respective contribution to agricultural
productivity. Nevertheless, conventional genes
have historically been the subject of intense
genetic selection by farmers,and more recently
by plant breeders, and have contributed to
major improvements in agricultural produc-
tivity (Alston and Pardey 1996; Duvick 1992).
Such progress in conventional gene research
should be recognized in any study on the effects
of introducing GM traits.

At time t and in a given region, conditional
on Gbt , denote the population distribution of
Gc by �t(Gc|Gbt). The distribution function
�t(·|Gbt) has a time t subscript to account for
the fact that genetic selection has been asso-
ciated with significant changes in the quality
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of germplasm over time. Then, from (3) and
conditional on (Gbt , Vt , Mt), average produc-
tion at time t is given by:

gt(Gbt , Vt , Mt , β)(5)

≡ Et[f (Gbt , Gc, Vt , Mt)]
=

∫
Gc

f (Gbt , Gc, Vt , Mt) d�(Gc|Gbt)

where Et is the expectation operator based on
the conditional distribution function �t(·|Gbt)
and β is a vector of parameters capturing the
effects of (Gbt , Vt , Mt) on mean output.

Since the advent of biotechnology, we have
faced a more complex situation where both
biotech genes and conventional genes change
over time. As noted earlier, the use of gene-
transfer technology offers good prospects for
additional productivity growth in agriculture.
However, conventional genes are numerous
and difficult to measure, and selectivity issues
can arise when the biotech seed companies add
biotech genes only to “high quality” conven-
tional genes to generate superior productivity
of the biotech seeds.

To analyze possible selectivity in the evalua-
tion of biotech gene productivity, we start with
the average production given in (5). At time
t, it follows from (5) that equation (3) can be
written as:

(6) yt = gt(Gbt , Vt , Mt , β) + et

where et ≡ yt − gt(Gbt , Vt , Mt , β) is an error
term satisfying E(et) = 0. Equation (6) is a
regression model. At time t, the error term et in
(6) measures the deviation from mean produc-
tion reflecting heterogeneity in unobservable
conventional genes. As such, the distribution
of et provides an indirect measurement of
conventional gene distribution.

In principle, once specified equation (6) can
be estimated using observations on production
output yt , and (Gbt , Vt , Mt). For given (Vt , Mt),
the estimation can provide useful information
on how alternative biotech genes Gbt affect
productivity. However, one needs to consider
whether, in equation (6), the distribution of et
is independent of Gbt . If so, then a standard
least-squares estimation of (6) would provide
an unbiased estimate of the productivity effects
of biotech genes, Gbt .

However, this condition (e being indepen-
dent of Gbt) would fail to hold in the presence
of genetic selectivity. Let Gbt = 0 in the absence

of biotech genes. Conditional on (Vt , Mt),
define et(0) ≡ yt − gt(0, Vt , Mt , β), which cap-
tures the difference in quality of the basic
germplasm in terms of yield. Denote the dis-
tribution of et(0) by Ht(a|0) = Prob[et(0) ≤ a].
Next, consider situations where biotech genes
are added to the basic germplasm, and, to
address selectivity issues, we consider the
case where biotech genes, Gbt , may be bun-
dled together with “high quality” conventional
genes. Let m ≥ 0 be a threshold of germplasm
quality satisfying Ht(m|0) ∈ (0, 1), where et ≥
m corresponds to “high quality” germplasm,
while et < m corresponds to “low quality”
germplasm. Let St be a scalar between 0 and 1,
St ∈ [0, 1]. In the presence of biotech genes
Gt

b �= 0, assume that the distribution of et(Gt
b)

is given by:

Ht(a|Gt
b) = [1 − St]Ht(a|0) if a < m,(7)

= −αt + [1 + αt]Ht(a|0)

× if a ≥ m

where αt ≡ StHt(m|0)/[1 − Ht(m|0)]. The para-
meter St in (7) acts as a selectivity index.

When St = 0, it follows from (7) that
Ht(·|Gt

b) = Ht(·|0), and hence the distribution
of basic germplasm quality does not differ
between conventional and biotech seeds. In
this case, E[et(Gt

b)] = 0, and there is no selec-
tivity bias in equation (6). However, when
St > 0, selectivity bias exists since equation (7)
implies that Ht(a|0) tends to be larger than
Ht(a|Gt

b). Figure 1 illustrates such a selectivity
bias, and the distribution functions Ht(a|0) and
Ht(a|Gt

b), and the associated probability den-
sity functions ht(a|0) and ht(a|Gt

b) are shown
in (1a) and (1b), respectively. In figure 1b, the
effects of St on ht(a|·) can be decomposed
into two steps. In a first step, the line AC is
shifted downward as the probabilities of fac-
ing any event a ∈ [−∞, m] are rescaled by a
factor (1 − St) ∈ [0, 1]. When St > 0, there is a
reduction in the probability that biotech seeds
would have “low quality” germplasm. In a sec-
ond step, all probabilities are shifted upward
proportionally to keep the area below the line
(AC′C′′D) equal to 1 (so that area ACC′ equals
the area CC′′D and the probabilities sum up
to 1). As illustrated in figure 1a, having St > 0
means a reduction in the probability of fac-
ing “low quality” germplasm and a rightward
shift in the distribution function from Ht(a|0)
to Ht(a|Gt

b).
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Figure 1. An illustration of selectivity effects

In the extreme case where St = 1,
equation (7) would imply that Ht(a|Gt

b) = 0
when a < m, that is, the distribution func-
tion Ht(a|Gt

b) becomes truncated below the
threshold point m. Such extreme selection
occurs where no low quality germplasm is used
in biotech seeds. In intermediate situations
where St ∈ (0, 1), equation (7) allows for
“partial selectivity”, that is, the intensity of
selection increasing with St .

Given Gt
b, the expected value of output yt at

time t is:

Et(yt|Gt
b)(8)

= g(Gt
b, Vt , Mt , β) + Et[et(Gt

b)]
= g(Gt

b, Vt , Mt , β)

+
∫

e
e dHt(e|Gt

b), or using (7),

= g(Gt
b, Vt , Mt , β)

+ [1 − St]
∫

e<m
e dHt(e|0)

+ [1 − St + St + αt]
×

∫
e≥m

e dHt(e|0),

= g(Gt
b, Vt , Mt , β)

+ Kt(m, St)

∫
e≥m

e dHt(e|0),

since et(0) has mean zero

where

Kt(m, St) ≡ St + αt(9)

= St/[1 − Ht(m|0)] ≥ 0.

Note that Kt(m, St) is proportional
to St and satisfies Kt(m, 0) = 0. Also,∫

e≥m e dHt(e|0) > 0. Then, equation (8)
implies that E(yt) ≥ g(Gt

b, Vt , Mt , β) in general,
with E(yt) = g(Gt

b, Vt , Mt , β) when St = 0 and
E(yt) > g(Gt

b, Vt , Mt , β) when St ∈ (0, 1]. The
selectivity bias is identified as:

(10) Dt ≡ Kt(m, St)

∫
e≥m

e dHt(e|0) ≥ 0.

Equation (10) provides the general and intu-
itive result that selecting high quality basic
germplasm increases the average productivity
of biotech seeds. This result applies under any
distribution function Ht(e|0).

In the special case where et(0) has a nor-
mal distribution with a mean of zero and
a variance of σ2

t , we can obtain more spe-
cific results. Let φ(·) and �(·) denote the
density function and the distribution func-
tion, respectively, for a standard normal ran-
dom variable N(0, 1). Then,

∫
e≥m e dHt(e|0) =

{φ(m/σt)/[1 − �(m/σt)]}σt (Johnson and Kotz,
1970, pp. 81–83), and the selectivity bias in (10)
becomes:

Dt ≡ Kt(m, St){φ(m/σt)/(10′)
× [1 − �(m/σt)]}σt .

Note that the term {φ(m/σt)/[1 − �(m/σt)]}
in (10′) is the inverse Mills ratio, which is com-
monly used to analyze selectivity bias under
normality (e.g. Heckman 1979). Equation (10′)
shows that the selectivity bias is proportional
to Kt(m, St), to the inverse Mills ratio, and to
the standard deviation σt .

Combining (8), (9) and (10′) provides:

(11a) yt = g(0, Vt , Mt , β) + et , when Gt
b = 0,
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and

= g(Gt
b, Vt , Mt , β) + St[1 − Ht(m|0)]−1(11b)

× {φ(m/σt)/[1 − �(m/σt)]}σt + ut ,

when Gt
b �= 0

where ut is an error term with a mean of
zero. Equations (11a)–(11b) provide a basis
to empirically evaluate the presence of gene
selectivity involving both traditional genes and
biotech genes.

We must consider which factors would lead
to genetic selectivity.As discussed above,selec-
tivity would be absent if biotech genes were
randomly inserted in the current germplasm.
Alternatively, selectivity would arise if only the
higher quality germplasm were chosen for GM
seed production. If this were the case, selectiv-
ity would be associated with genetic selection
that imposes some level of control on the dis-
tribution of germplasm and its quality. Thus,
the selectivity parameter St in (11b) can vary
depending on the situation.

To investigate the likelihood that selectiv-
ity may vary, we consider the parameterization
St ≡ ztγ, where zt is a vector of variables pre-
sumed to affect selectivity and γ is a vector
of parameters.10 Then, equations (11a)–(11b)
provide a basis to estimate the parameters
(β, γ) and to test the null hypothesis of no selec-
tivity bias (when γ = 0). In the presence of
selectivity bias (when γ �= 0), equation (11b)
allows us to investigate and measure the
effects of genetic selectivity on productivity
assessment. As discussed earlier, the asser-
tion of greater control over the quality of the
germplasm may be associated with more con-
centrated seed markets. Similarly, selectivity
may be less likely to arise when the adop-
tion of GM hybrids is high. If so, genetic
selectivity may vary with market conditions.
Equation (11) (with St ≡ ztγ) will allow us to
investigate these issues empirically.

Data

To investigate the potential for genetic selec-
tivity, we use data on corn yield obtained
from field experiments conducted from

10 While the specification St ≡ ztγ does not restrict St to be
between 0 and 1, it does not seem to be an issue in our empirical
analysis. Indeed, the results reported in table 2 below correspond
to estimates of St that typically remain between 0 and 1.

1990 to 2010 at the University of Wisconsin.
The field experiments were undertaken at
the university’s Agricultural Research Sta-
tions and at long-term farmer cooperators
located across the state of Wisconsin (see
http://corn.agronomy.wisc.edu/HT/images/
Map.jpg for a map of the research locations).11

In these experiments, management practices
were typical of those utilized on farms prac-
ticing mainly rainfed agriculture, including
planting density, spring/fall tillage, fertil-
izer/herbicide/insecticide applications, and
irrigation. A total of 4,748 hybrids have been
tested in the past 21 years. Of these, 2,653
are conventional hybrids, and 2,095 are GM
hybrids. All hybrids are tested in multiple sites
and some for multiple years, yielding 31,799
usable observations for the analysis.

There are two major groups of GM traits in
the corn hybrid market: those which provide
insect resistance (IR) and those which pro-
vide herbicide tolerance (HT). The IR traits
are designed to control specific pest popula-
tions,thus reducing corn yield losses due to pest
damage.Two IR traits are examined here:those
controlling the European Corn Borer (ECB),
and those controlling corn rootworms (RW).12

The HT traits are designed to make it eas-
ier to control weed infestations. Two HT traits
are identified: those related to glyphosate tol-
erance (GT), and those related to glufosinate
(GF). Alt ogether these traits are embedded
in a total of 12 different types of GM hybrids:
four single-trait hybrids (ECB, GT, RW, and
GF), four double-stack hybrids (ECB/GT,
ECB/RW, ECB/GF, and GT/RW), three triple-
stack hybrids (ECB/RW/GT,ECB/GT/GF,and
ECB/RW/GF),and one quadruple stack hybrid
(ECB/RW/GT/GF). In addition to detailed
information on management practices and
yield, the data also contain specific “event”
information on the patented gene(s) included
in the GM hybrids, as well as when the event
was first introduced and commercialized.13

To investigate the potential selectivity bias
associated with increasing market dominance

11 Our model applies to all biotech seeds in general. We focus
on the corn hybrid case due to data availability.

12 There are different GM events associated with GM seeds. An
event refers to the unique DNA recombination event that took
place in one plant cell, which was then used to generate entire
transgenic plants. Our analysis focuses on broad GM traits (e.g.
ECB, RW) and does not explore possible productivity differences
across GM events across traits. Exploring such differences is a good
topic for further research.

13 As noted in footnote 12, biotech traits are associated with
“genetic events” corresponding to the chromosomal location of the
transgene.
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Figure 2. Seed market share of biotech firms
and GM adoption rate in acreage, 1990–2010

of the biotech companies in the seed market,
we use the aggregate seed market share of
biotech companies involved in the corn seed
market.14 Following several waves of merg-
ers and acquisitions since the mid-1990s, there
are currently four such companies: Monsanto,
DuPont (via the acquisition of Pioneer Hi-Bred
International in 1999), Dow AgroSciences, and
Syngenta. We constructed the aggregate mar-
ket share of these four companies and their
legacy companies (before mergers and acqui-
sitions) when applicable from 2000 to 2007
using acreage data collected by dmrkynetec
(DMR), of St. Louis, MO. Prior to the com-
mercialization of biotech corn hybrids in 1996,
no biotech firm was involved in corn seed pro-
duction. Thus, we set the four biotech firms’
corn seed market share at zero prior to 1997.
From 1997 to 1999, we use market share statis-
tics reported in Fernandez-Cornejo (2004) for
1998, and assume that these numbers are the
same for 1997 and 1998 (given that most acqui-
sitions occur either in 1997 or after 1999). For
the more recent years from 2008 to 2010, we
obtained information from the annual reports
released by these firms.

Figure 2 shows the evolution of the
hybrid corn seed market concentration by
biotech/seed firms as measured by the seed
market share of the vertically-integrated
biotech firms, and also shows the GM corn
adoption rate in terms of percentage of acreage
over the last 21 years. DuPont’s acquisition of

14 We define “biotech companies” as firms possessing patented
GM trait technology. A company may have undertaken some
biotech seed research and development, but will be classified in
our definition as a “biotech” firm only if it has acquired patent(s)
on its research output. Such a definition is empirically tractable
and observable since patent information is publicly available while
in-house innovation activities are often hidden from the public.
Moreover,all the GM traits in the current commercial biotech seeds
are patented.

Pioneer in 1999 increased biotech firms’ aggre-
gate seed market share from about 20% to
over 50% in 2000. By 2010, these firms sup-
plied about 86% of the U.S. corn seed market.
Much of the expansion was through mergers
and acquisitions of local seed companies by
these vertically-integrated biotech firms. For
GM adoption rate, the values from 1996 to
1999 are taken from Moss,Schmitz and Schmitz
(2002), and those from 2000 onwards are from
the USDA ERS.

Table 1 presents summary statistics of the
major variables used in the empirical analy-
sis. On average, GM hybrids tend to have a
higher yield than conventional hybrids, and
most stack hybrids have a higher yield than
single-trait hybrids. However, as argued above,
these productivity differences could be due in
part to selectivity (if GM traits have come to
be associated with “better” germplasm). For
GM hybrids, the data also include the num-
ber of years since the corresponding event was
first introduced, the “event lag”. These vari-
ables are intended to capture possible inter-
action effects between traditional genes and
biotech genes, since they affect corn yield. In
this context, the“event lag”variables can affect
yield. For example, they could have positive
effects on yield if geneticists and plant breeders
manage to reduce negative interaction effects
over time between particular events and tradi-
tional genes. In 2010, note that all single-trait
events except for the rootworm event, and
two double-stack events (ECB/GF, GT/GF)
had been on the market for at least 10 years.
Triple-stack and quadruple-stack hybrids first
entered the market in recent years, and thus
have fewer event years than most single- and
double-stack events.

Econometric Analysis

We use equations (11a) and (11b) to analyze
and test hypotheses about genetic selectivity.
Included among the explanatory variables for
this analysis are the biotech traits Gb reported
in table 1.Also included are the following man-
agement variables, M: crop rotation, planting
density, fertilizer use, irrigation, insecticide use,
and spring/fall tillage. Finally, we control for
the environmental variables, V, by including
dummy variables for each location,and dummy
variables for each year, as well as their inter-
actions. These dummy variables capture agro-
climatic conditions and the effects of weather
and pest populations (which can vary across
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Table 1. Summary Statistics

Number of Standard
Variable observations Mean Deviation Min. Max.

Yield (bushels/acre)
Conventional 19, 652 166.6 37.9 21 285.2
Glyphosate Tolerant (GT) single 972 182 37.9 56.2 276
Glufosinate Tolerant (GF) single 103 189.8 31.4 104.8 258
European Corn Borer (ECB) single 3, 484 197.6 36 45.7 287.8
Root worm (RW) single 36 185.1 28.5 125.3 252.4
ECB/RW double 85 210.5 26.8 130.3 264.3
ECB/GT double 1, 454 191.2 35.6 74.2 280.8
GT/RW double 166 204.6 35.6 109.9 268.7
ECB/GF double 998 197.6 39.9 65.7 285.5
ECB/RW/GT triple 3, 215 202.8 31 95 288
ECB/GT/GF triple 631 201.1 36.4 98.3 283.9
ECB/RW/GF triple 206 209.1 31.7 104.8 285.1
ECB/GT/RW/GF quad. 797 208.5 33.2 78.5 289.8

Number of years since event introduction
Glyphosate Tolerant (GT) single 972 7.1 2.8 1 13
Glufosinate Tolerant (GF) single 103 6.7 4.7 1 14
European Corn Borer (ECB) single 3, 484 7.2 2.1 1 14
Root worm (RW) single 36 1.8 0.7 1 4
ECB/RW double 85 2 0.9 1 4
ECB/GT double 1, 454 7.2 20.7 1 12
GT/RW double 166 3.3 1.2 1 5
ECB/GF double 998 7.9 3.7 1 15
ECB/RW/GT triple 3, 215 2.6 1 1 6
ECB/GT/GF triple 631 3.9 1.1 1 5
ECB/RW/GF triple 206 4.2 2.2 1 8
ECB/GT/RW/GF quad. 797 3 1.3 1 5
Fertilizer (lbs/acre) 31, 799 130.2 47.3 0.5 236.3
Planting density (1,000 seeds/acre) 31, 799 28.5 1.9 18.3 33.4
Biotech firms’ annual seed market share 14 0.55 0.23 0.18 0.86

Note: Corn seed market share of these firms is set to be zero prior to 1997 because there was no biotech seed in the market. The summary statistics for this
variable is for 1997–2010 only.

location as well as across years). Controlling
for these effects is important to ensure that the
error term et in (6) or (11) represents only the
heterogeneity of the basic germplasm (and not
weather effects or pest population effects).

A word of caution is needed about our
model and its interpretation. We focus our
attention on evaluating selectivity issues in the
germplasm used in GM hybrids. In this context
equations (11a)–(11b) provide a proper basis
for our investigation. As noted, a key argu-
ment is that the error term et in (11) represents
the unobserved distribution of the germplasm.
The weather and pest population effects are
captured through the time dummies, the loca-
tion dummies, and their interactions. However,
some GM traits (e.g. ECB or RW) contribute
to yield by controlling pest populations. In this
case, our estimated model provides only par-
tial measures of the effects of GM traits on
corn yield (as some of these effects are being

captured by the time/location dummies).While
our econometric analysis provides a basis for
evaluating selectivity effects related to GM
hybrids, it should not be used to evaluate the
productivity effects of GM traits.

Each biotech hybrid includes at least one
genetic trait, each represented by a corre-
sponding dummy variable(s). In the presence
of stacking, biotech hybrids would include
more than one GM trait. To capture stack
effects, we also include corresponding stack
dummies. Therefore, biotech genes, Gb, in
equation (11a)–(11b) are captured by both trait
dummies and stack dummies when applica-
ble.15 Additionally, and as noted above, we also
include “event lag” variables that measure the

15 Since “conventional seeds” are not included among these
dummy variables, coefficients of these dummies are interpreted as
yield deviations from conventional seeds.
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number of years since a particular event was
first introduced in the market. Such variables
were introduced in linear form, but also in
quadratic form for those events with more
than 10 years of market presence (to capture
potential curvature effects).

We estimated equations (11a) and (11b)
by ordinary least squares with robust errors,
the term σt in (11b) being estimated as the
standard deviation of the error term obtained
from (11a).We set the threshold level m to zero
(m = 0), which corresponds to a below-the-
mean threshold for selectivity in germplasm.
Given St ≡ ztγ, equation (11b) takes
the form:

Yieldt = g(Gt
b, Vt , Mt , β) + ztγ

(11b′)

· 4σt√
2π

+ ut , when Gt
b �= 0

where [ztγ · 4σt√
2π

] is a Heckman-like factor
correcting for selectivity bias. Thus, the null
hypothesis of no selectivity bias corresponds
to γ = 0. Alternatively, finding evidence that
γ �= 0 would document the presence of selec-
tivity bias; in this case, (11b′) provides mea-
surement of such effects on productivity
assessment.

We consider three specifications for (ztγ) in
(11b′). In the first specification S1, zt , includes
only a dummy variable for GM seeds, which
allows us to investigate whether or not there is
selection bias associated with all GM hybrids
when compared to conventional hybrids. In
the second specification, S2, zt includes three
variables: a constant, the 1-year lagged seed
market share of the biotech firms, and the 1-
year lagged GM adoption rate in percentage
of acreage. The coefficients of the market
share variable and adoption rate variable per-
mit us to analyze whether selectivity bias
may vary with changing market concentra-
tion and level of GM adoption. The first and
second specifications restrict the selectivity
bias to be the same across all GM traits.
This restriction is relaxed in the third spec-
ification, S3, where we allow the selection
bias to vary by 9 GM hybrid types: single-
trait ECB; single-trait GT; and the stacked
hybrids.16 As in S2, the third specification also

16 Single-trait RW and GF hybrids, and the double-stack
ECB/RW hybrids are not included because they have a small
number of observations.

includes the 1-year lagged seed market share
of the biotech firms, and the 1-year lagged GM
adoption rate to capture possible effects of
market concentration and level of adoption on
selectivity.

We estimate equations (11a) and (11b′)
jointly; however, the selectivity term ztγ · 4σt√

2π

in (11b′) is relevant only when Gt
b �= 0. Effec-

tively, the variables zt in (11b′) are speci-
fied as interaction variables with a dummy
variable GM, where GM = 0 if Gt

b = 0 and
GM = 1 if Gt

b �= 0. Table 2 shows the estima-
tion results from equations (11a) and (11b′)
under all three specifications. In all specifica-
tions, we found strong statistical evidence of
selectivity bias. In S1, the coefficient of the
GM dummy is 0.50; it is statistically signifi-
cant at the 1% level, showing the presence
of selectivity. In S2, the coefficient of the GM
dummy is 0.36,while the coefficients of the seed
market share for the integrated biotech firms
and the GM adoption rate are positive and
negative, respectively, and all are statistically
significant at the 1% level. Increased market
concentration appears to contribute to increas-
ing selectivity bias, while a high rate of GM
adoption decreases selectivity bias. As biotech
firms grow, they tend to insert GM traits into
better-quality germplasm. However, the incen-
tive to be selective in their choice of germplasm
is reduced when the conventional market is
shrinking.

Specification 3 allows for selectivity effects
to vary across types of GM trait. As shown
in table 2, the effects of market share and
GM adoption rate on selectivity remain sim-
ilar. However, S3 uncovers evidence of het-
erogeneous selectivity effects across GM traits.
Using aWald test,we tested the null hypothesis
that selectivity bias is the same across GM traits
(i.e. testing specification 2 versus specification
1). The Wald test statistic had a p-value of
0.01. Thus, we reject S2 and conclude that S3 is
more appropriate, as it captures heterogeneity
in selectivity across different GM traits.

As can be seen from table 2, under S3
there is a positive and statistically significant
selectivity bias for single-trait ECB and GT
hybrids, ECB/GT and GT/RW double-stack
hybrids,ECB/RW/GT and ECB/GT/GF triple-
stack hybrids, and the quadruple-stack hybrids.
There is no statistical evidence of selectivity
bias for ECB/GF double-stack hybrids and
ECB/GF/RW triple-stack hybrids. The results
demonstrate that selectivity bias is not uniform
and varies across GM traits. We evaluate the
extent of the different selectivity biases below.
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Table 2. Estimation of Yield Effects and Selectivity Bias Using Robust Errors

Specification 1 Specification 2 Specification 3

Variables Coeff. t-Stat. Coeff. t-Stat. Coeff. t-Stat.

γ
4σt√

2π
· GM 0.50∗∗∗ 4.58 0.36∗∗∗ 2.72 − −

4σt√
2π

· ECB single − − − − 0.55∗∗∗ 3.83

4σt√
2π

· GT single − − − − 0.30∗ 1.78

4σt√
2π

· ECB/GT double − − − − 0.40∗∗ 2.55

4σt√
2π

· GT/RW double − − − − 0.75∗∗∗ 3.29

4σt√
2π

· ECB/GF double − − − − 0.06 0.31

4σt√
2π

· ECB/RW/GT − − − − 0.40∗∗∗ 2.81

4σt√
2π

· ECB/GT/GF − − − − 0.51∗∗∗ 2.62

4σt√
2π

· ECB/GF/RW − − − − −0.25 −1.24

4σt√
2π

· ECB/GT/GF/RW − − − − 0.53∗∗∗ 2.79

4σt√
2π

· lagged market share − − 0.39∗∗∗ 3.93 0.39∗∗∗ 3.97

4σt√
2π

· lagged adoption rate − − −0.46∗∗∗ −4.31 −0.44∗∗∗ −4.07

Previous crop
Alfalfa 23.3∗∗∗ 2.95 23.2∗∗∗ 2.94 23.2∗∗∗ 2.93
Wheat 15.6∗∗ 2.05 15.6∗∗ 2.05 15.5∗∗ 2.03
Soybean −1.3 −0.15 −1.3 −0.15 −1.4 −0.17
Cucumber −31.5∗∗ −2.52 −41.9∗∗∗ −4.93 −42.1∗∗∗ −4.96
Lupine −10.5 −1.03 −46.9∗∗∗ −6.31 −47.0∗∗∗ −6.31
Pea −27.6∗∗∗ −4.22 −27.9∗∗∗ −4.26 −28.1∗∗∗ −4.30
Potato −62.8∗∗∗ −14.36 −63.0∗∗∗ −14.4 −63.2∗∗∗ −14.45
Triticale 16.7∗∗ 2.35 −19.7∗∗∗ −3.50 −19.7∗∗∗ −3.51

GE traits
GT (glysophate tolerant) −2.2 −0.54 1.1 0.25 3.2 0.61
GF (glufosinate tolerant) −5.6 −1.05 −0.1 −0.02 10.3∗∗ 2.35
ECB (European corn borer) −13.5∗∗∗ −3.55 −5.7 −1.22 −11.0∗∗ −2.28
RW (Root worm) −26.6∗∗∗ −3.00 −2.37∗∗∗ −2.68 −14.2∗ −1.73

Stacked GE dummies
ECB/RW 17.3∗ 1.79 10.5 1.04 20.3∗ 1.89
ECB/GT 13.8∗∗ 2.51 6.0 0.94 8.1 1.12
GT/RW 11.1 1.11 8.5 0.83 −18.2 −1.45
ECB/GF 17.7∗∗∗ 2.92 9.1 1.19 13.6∗ 1.80
ECB/RW/GT 35.5∗∗∗ 3.29 25.8∗∗ 2.19 17.7∗ 1.68
ECB/GT/GF 12.7 1.48 0.1 0.01 −12.0 −1.24
ECB/GF/RW 45.6∗∗∗ 3.96 33.6∗∗∗ 2.63 40.8∗∗∗ 3.49
ECB/GT/GF/RW 34.8∗∗ 2.57 20.0 1.29 −2.5 −0.21
EVTyrs of GT −4.6∗∗∗ −5.49 −4.6∗∗∗ −5.04 −4.7∗∗∗ −4.99

(Continued.)
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Table 2. Continued

Specification 1 Specification 2 Specification 3

Variables Coeff. t-Stat. Coeff. t-Stat. Coeff. t-Stat.

EVTyrs of GT squared 0.3∗∗∗ 6.01 0.4∗∗∗ 5.94 0.4∗∗∗ 5.89
EVTyrs of GF −3.0∗ −1.72 −3.3∗ −1.86 −3.2∗ −1.82
EVTyrs of GF squared 0.2∗ 1.80 0.2∗∗ 1.97 0.2∗∗ 2.02
EVTyrs of ECB 2.7∗∗∗ 4.13 1.5∗ 1.88 1.4∗ 1.72
EVTyrs of ECB squared −0.2∗∗∗ −4.85 −0.1∗∗∗ −2.76 −0.1∗∗∗ −2.81
EVTyrs of RW 2.4 0.53 2.8 0.61 3.7 0.82
EVTyrs of ECB_RW 3.2∗∗ 1.98 3.4∗∗ 2.09 2.6∗ 1.65
EVTyrs of ECB_GT −2.6∗∗ −2.56 −2.7∗∗∗ −2.74 −2.8∗∗∗ −2.73
EVTyrs of ECB_GT squared 0.2∗∗ 2.41 0.2∗∗∗ 2.85 0.2∗∗∗ 2.77
EVTyrs of GT_RW 2.5∗∗ 2.35 2.8∗∗ 2.56 3.0∗∗∗ 2.73
EVTyrs of ECB_GF −1.6∗∗ −2.42 −1.9∗∗∗ −2.88 −1.8∗∗∗ −2.75
EVTyrs of ECB_GF squared 0.1 1.38 0.1∗ 1.88 0.1∗ 1.82
EVTyrs of ECB_RW_GT −1.2∗∗∗ −3.57 −1.1∗∗∗ −3.21 −1.1∗∗∗ −3.05
EVTyrs of ECB_GT_GF −0.2 −0.24 −0.002 −0.00 −0.03 −0.05
EVTyrs of ECB_GF_RW −2.1∗∗∗ −4.66 −2.0∗∗∗ −4.47 −2.8∗∗∗ −6.03
EVTyrs of ECB_GT_GF_RW 0.5 1.23 0.5 1.28 0.5 1.15
Density 0.5∗ 1.95 0.5∗ 1.95 0.5∗ 1.95
Fertilizer 0.1 0.88 0.1 0.88 0.1 0.88
Irrigation 136.5∗∗∗ 18.90 104.2∗∗∗ 13.87 104.5∗∗∗ 13.91
Insecticide 7.2∗∗∗ 3.20 7.2∗∗∗ 3.20 7.15∗∗∗ 3.16
Fall tillage 29.0∗∗∗ 7.44 29.0∗∗∗ 7.43 29.0∗∗∗ 7.43
Spring tillage −2.3 −0.58 −2.3 −0.58 −2.3 −0.58
Constant 165.6∗∗∗ 11.04 165.6∗∗∗ 11.04 165.7∗∗∗ 11.04
R-squared 0.85 0.85 0.85

Note: Statistical significance is noted by ∗ at the 10% level, ∗∗ at the 5% level, and ∗∗∗ at the 1% level. To save space, the estimates of parameters associated
with year dummies, location dummies and their interactions are omitted from the table but are available upon request. “EVTyrs of XX” is the number of years
since gene event XX has been first introduced and commercialized in corn.

Implications

In this section,our empirical estimates are used
to generate additional insights into sources
of selection bias, and the changing patterns
of selection bias over time. We focus on GM
hybrids in general (S1 and S2), and for a
selected GM hybrid with ECB single trait (S3)
for which our data contain the most observa-
tions among all GM seeds. The time period
under examination is from 1997 to 2010. The
estimated effects of selectivity bias on corn
yield (in bushels per acre) for GM seeds are
presented in table 3.

For S2 and S3, we decompose the bias effects
into three components, those associated with
the GM trait(s), those associated with the mar-
ket dominance of biotech firms, and those
associated with the level of total GM adop-
tion. From table 3, the selectivity bias shows a
non-linear trend over time, first increasing, and
then peaking in the early to mid-2000s,and then
decreasing, especially since 2008. Such a pat-
tern may be due in part to the offsetting effects
of an expanding market share for biotech firms
and an increasing GM adoption rate. Under

S1, the selectivity bias generates a sizable yield
difference for GM hybrids compared with con-
ventional hybrids: the yield differential ranges
from an average of 8.8 bushels per acre to 16.2
bushels per acre for GM hybrids. Recall that
the average yield of conventional hybrids in
our sample is 166.6 bushels per acre. The selec-
tivity bias can raise GM corn yields by 5-10%.
These estimates of the contribution of selec-
tivity are relatively high compared to reported
results for the total contribution of some GM
traits (e.g. see Stanger and Lauer 2006).

When the total effects of bias are decom-
posed into separate components, results under
S2 suggest that the expanding market share of
biotech firms contributes to a strengthening of
the bias effects. They also show that increased
GM adoption has an offsetting effect on selec-
tivity bias. From 1997 to 2010, the selection
bias attributed to market concentration has
increased, but the increase was balanced by the
negative effect of the adoption rate on bias.
Interestingly, the latter effect has dominated
the former since 2005.

Under specification S3, for single-trait ECB
hybrids, the total bias effects range from

 at U
niversity of W

isconsin-M
adison on M

arch 29, 2013
http://ajae.oxfordjournals.org/

D
ow

nloaded from
 

http://ajae.oxfordjournals.org/
JL
Highlight



752 April 2013 Amer. J. Agr. Econ.

Table 3. Decomposition of Selectivity Bias (bushels/acre) Over Time

S1 S2 S3: Single trait ECB1-year 1-year
lagged lagged GM Biotech- GM Biotech- GM

biotech- adoption GM firm adoption GM firm adoption
Year σt firm share rate Total trait share rate Total trait share rate Total

1997 14.9 0 0.04 11.8 8.6 0 −0.5 8.2 13 0 −0.5 12.5
1998 16.9 0.18 0.12 13.4 9.8 1.9 −1.5 10.2 14.7 1.9 −1.4 15.2
1999 16.2 0.18 0.38 12.8 9.4 1.8 −4.5 6.7 14.1 1.8 −4.2 11.7
2000 15.2 0.18 0.38 12 8.8 1.7 −4.3 6.3 13.3 1.7 −4 11
2001 14.6 0.52 0.25 11.6 8.5 4.7 −2.7 10.5 12.7 4.7 −2.5 14.9
2002 19.5 0.54 0.26 15.4 11.3 6.5 −3.7 14.1 17 6.6 −3.5 20
2003 15.5 0.53 0.34 12.3 9 5.1 −3.9 10.2 13.5 5.1 −3.7 14.9
2004 17 0.51 0.4 13.5 9.9 5.5 −5 10.3 14.8 5.5 −4.7 15.6
2005 18.3 0.50 0.47 14.5 10.6 5.7 −6.3 10 16 5.7 −6 15.7
2006 19 0.68 0.52 15 11 8 −7.3 11.8 16.6 8 −6.9 17.7
2007 20.5 0.69 0.61 16.2 11.9 8.8 −9.2 11.5 17.9 8.8 −8.7 18
2008 11.1 0.72 0.73 8.8 6.4 5 −6 5.4 9.7 5 −5.7 9
2009 16 0.79 0.8 12.7 9.3 7.9 −9.4 7.7 14 7.9 −8.9 12.9
2010 18.5 0.80 0.85 14.6 10.7 9.2 −11.6 8.4 16.1 9.2 −11 14.4

9 bushels per acre to 20 bushels per acre.
This result partially reflects the fact that ECB
hybrids exhibit strong GM selectivity bias
effects among all GM hybrids (see table 2).
Table 3 shows that the GM trait selectivity
effects for ECB are positive and large, with
moderating effects generated by higher GM
adoption rate effects in recent years.

Our analysis shows that because of selectiv-
ity bias, traditional genes’ contribution to pro-
ductivity may be greater than first anticipated.
This result raises questions about the efficiency
of current property rights supporting genetic
improvements in agriculture. Over the last two
decades, the shift toward patenting genes has
stimulated private research on biotechnology
and its applications to agriculture. Our findings
that observed yield improvements often asso-
ciated with GM technology are partially due
to improvements in germplasm raise questions
about whether current patent laws provide
appropriate incentives to support investments
in either agro-biotechnology or traditional
breeding programs.

Concluding Remarks

This paper presents an analysis of potential
selectivity issues in the evaluation of the pro-
ductivity of GM technology. GM genes are at
the heart of the current biotechnology rev-
olution in agriculture. However, traditional
genetic improvements continue to play an
important role in contributing to productiv-
ity increases. Given the presence of many

traditional genes in all germplasm, identify-
ing the separate effects of GM genes and
conventional genes can be difficult.

Our analysis provides a framework to inves-
tigate selectivity issues related to how GM
genes and conventional genes are combined
in GM seeds. Building on the contributions
made by Heckman, we present an empirical
analysis of gene selectivity applied to GM
corn yield in the United States. Selectivity
arises when biotech/seed firms insert GM traits
more frequently into high-quality germplasm
than in lower-quality germplasm. We argue
that such quality management schemes can
increase profits for biotech/seed firms. How-
ever, because of the existence of such schemes,
observed high GM corn yield should not be
attributed only to GM genes, as there will
be a selectivity bias in productivity evalua-
tion. Identifying this selection effect is impor-
tant when evaluating the true productivity of
GM traits.

Using experimental data on Wisconsin corn
yields from 1990 to 2010, our analysis uncovers
evidence of selection bias. The results indi-
cate that some of the observed yield gains
associated with GM hybrids is attributable to
conventional genes. This finding stresses the
important role that traditional breeding still
plays in productivity improvements for corn,
even after the widespread adoption of GM
corn hybrids. We also find that these selectiv-
ity effects are not uniform across GM traits.
In some cases, the effects are small and not
statistically significant (e.g. ECB/GF). In other
cases, these effects can be large (e.g. ECB
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and GT/RW). We also investigate how mar-
ket concentration of biotech firms and the GM
adoption rate can affect selectivity bias in corn
yield. We find that rising market concentra-
tion has contributed to significant increases in
selectivity bias in corn yield over the last 15
years. However, this positive effect is offset in
part by the negative impact of the rising GM
adoption rate in recent years. Our evidence of
selectivity bias raises questions about whether
current patent policy has shifted the incen-
tives from investing in germplasm improve-
ment to investing in GM trait development.
To the extent that recent yield increases are
due in part to improved germplasm, one must
ask whether current patent policy provides
appropriate incentives to invest in traditional
breeding programs.

While our analysis was applied to
experimental corn yield data in Wiscon-
sin, additional research is needed to explore
selectivity issues in broader contexts. First, it
would be useful to investigate such issues in
other regions of the world. Given that breeders
often develop hybrids that are adapted to
local agro-climatic conditions, our findings
may not hold in different regions. Second,
more work is needed to explore whether
selectivity bias may also arise when evaluating
the productivity of other GM crops (e.g.
cotton, soybean). Third, our analysis focused
on the broad effect of GM traits (e.g. ECB,
RW) and did not explore possible differences
related to the insertion of specific GM events.
More research is needed to explore such dif-
ferences. Fourth, we need to better understand
the effects of GM technology on farmers’
exposure to pest damages and weather risk.
This seems particularly important given the
prospects of future climate change. Finally,
further research is needed to explore whether
current property rights provide appropriate
incentives to support investments in both
agro-biotechnology and traditional breeding
programs. These questions must be framed
in a global context, where scientific progress
can be uneven across industries and countries,
with significant prospects for agricultural
technology transfers both over space and
across commodities.
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