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Abstract: Variability in soil organic carbon (SOC) results from natural and human processes 
interacting across time and space, and leads to large variation in the minimum difference in 
SOC that can be detected with a particular experimental design. Here we report a unique 
comparison of minimum detectable differences (MDDs) in SOC, and the estimated times 
required to observe those MDDs across the north central United States, calculated for the two 
most common SOC experiments: (1) a comparison between two treatments, e.g., moldboard 
plow (MP) and no-tillage (NT), using a randomized complete block design experiment; 
and (2) a comparison of changes in SOC over time for a particular treatment, e.g., NT, 
using a randomized complete block design experiment with time as an additional factor. 
We estimated the duration of the two experiment types required to achieve MDD through 
simulation of SOC dynamics. Data for the study came from 13 experimental sites located in 
Iowa, Illinois, Ohio, Michigan, Wisconsin, Missouri, and Minnesota. Soil organic carbon, bulk 
density, and texture were measured at four soil depths. Minimum detectable differences were 
calculated with probability of Type I error of 0.05 and probability of Type II error of 0.15.

The MDDs in SOC were highly variable across the region and increased with soil depth. 
At 0 to 10 cm (0 to 3.9 in) soil depth, MDDs with five replications ranged from 1.04 g C 
kg–1 (0.017 oz C lb–1; 6%) to 7.15 g C kg–1 (0.114 oz C lb–1; 31%) for comparison of two 
treatments; and from 0.46 g C kg–1 (0.007 oz C lb–1; 3%) to 3.12 g C kg–1 (0.050 oz C lb–1; 
13%) for SOC change over time. Large differences were also predicted in the experiment 
duration required to detect a difference in SOC between MP and NT (from 8 to >100 years 
with five replications), or a change in SOC over time under NT management (from 11 to 
71 years with five replications). At most locations, the time required to detect a change in 
SOC under NT was shorter than the time required to detect a difference between MP and 
NT. Minimum detectable difference and experiment duration decreased with the number of 
replications and were correlated with SOC variability and soil texture of the experimental 
sites, i.e., they tended to be lower in fine textured soils. Experiment duration was also reduced 
by increased crop productivity and the amount of residue left on the soil. The relationships 
and methods described here enable the design of experiments with high power of detecting 
differences and changes in SOC and enhance our understanding of how management prac-
tices influence SOC storage.

Key words: experiment duration—minimum detectable difference—no-till—soil organic 
carbon—statistical power—tillage 

High natural spatial variability in soil 
organic carbon (SOC) makes the detection 
of differences in SOC between different 
land uses or management practices dif-
ficult. It is alarming that the experimental 
design and numbers of replications in many 
SOC studies result in such low statistical 
power that the probability of detecting even 
relatively large differences in SOC is quite 
small (Yang et al. 2008; VandenBygaart 2009; 
Kravchenko and Robertson 2011). Poorly 
designed experiments with insufficient 
statistical power are studies designed to fail. 
No matter how well executed, these stud-
ies waste resources searching for effects that 
cannot be easily found. Moreover, the failure 
to detect changes in SOC between different 
management systems when they do exist can 
misdirect further research, lead to errors in 
our understanding of terrestrial carbon (C) 
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cycling, and result in missed opportunities for 
improved SOC management (Kravchenko 
and Robertson 2011). Such failures may result 
from experiments that are poorly designed, 
insufficiently replicated, or too brief to yield a 
detectable SOC change.

The negative consequences of low power 
experiments affect not only the individual 
researcher, but also the state of knowledge in 
the field. Experiments that have little chance 
of detecting a change in SOC paradoxically 
lead to an increased risk of publishing false 
positive studies (Ellis 2010; Ioannidis 2005). 
Authors and journal reviewers alike tend to 
favor studies reporting positive findings, so 
positive outcomes are more likely reported 
than null results. This filtering of results 
means that an increased number of purely 
chance findings will be published, and the 
proportion of false positives in the literature 
is enriched. A higher proportion of false 
positives in the literature will naturally lead 
to the mistaken impression that these results 
are of importance, rather than being the 
necessary chance results that occur through 
the careful application of the experimental 
design criteria based on statistical signifi-
cance (Sterne and Smith 2001). The result 
of a misleading body of literature on SOC 
could be delayed or misdirected research 
and missed opportunities for improved SOC 
management. Fortunately, researchers can 
avoid these mistakes by applying statistical 
power analysis and simulating SOC dynam-
ics when designing experiments.

Power analysis is a statistical analysis tech-
nique that allows researchers to estimate 
either the minimum size of the effect that 
can be detected with a given sample size 
and data variability, or the minimum sample 
size (or number of replications) required to 
detect an experimental effect of a given size, 
with acceptably low probabilities of both 
Type I and Type II errors (Ellis 2010). Type I 
error occurs when we falsely reject the null 
hypothesis, that is, report presence of a differ-
ence when in fact there is none, whereas the 
Type II error occurs when we falsely accept 
the null hypothesis, declaring the absence of 
a difference when one actually exists. The 
power of a statistical test is the probability of 
not committing a Type II error, that is, the 
probability of correctly rejecting false null 
hypothesis. In the context of testing effects of 
land use and management practices on SOC, 
the statistical power depends on the statisti-
cal significance criterion used, experimental 

design, number of replications, variability 
in SOC, and the magnitude of the effect of 
interest (e.g., SOC difference).

The significance criterion, the proba-
bility of Type I error (α) is generally well 
controlled at commendably low levels. For 
example, a 0.05 (5%; 1 in 20) probability 
of reporting a statistically significant differ-
ence, when there is none, is a commonly 
used value for determining whether or not 
agricultural management practices differ in 
terms of their effects on SOC. Unfortunately, 
the probability of Type II error (β) receives 
much less attention. The two main reasons 
for this are that estimating β requires (1) 
information on the variability of SOC in the 
studied soil—information that is often not 
available prior to collecting the data from the 
experiment; and (2) an educated guess on the 
magnitude of the expected differences—an 
assessment that requires good understand-
ing of the directions and magnitudes of 
the studied processes. However, estimating 
statistical power (1-β) before beginning data 
collection is extremely important given the 
dangers associated with ending up with a 
low statistical power study. Unfortunately, it 
is not uncommon that a study reports a con-
clusion of no difference between a certain set 
of practices when the probability of a Type II 
error (β), if calculated, would be as high as 
20%, 50%, or even 90%.

Multiple articles reporting on the statisti-
cal power of experiments designed to detect 
changes in SOC have found that the statis-
tical power is often low due to the high 
variability in SOC and the practical lim-
itations on the number of samples that can 
be gathered (Hungate et al. 1996; Garten 
and Wullschleger 1999; Yang et al. 2008; 
Kravchenko and Robertson 2011). Only 
two of these studies report on the statistical 
power of SOC experiments in corn (Zea 
mays L.)-based cropping systems (Yang et 
al. 2008; Kravchenko and Robertson 2011), 
and almost all the studies examine only one 
or two sites (Hungate et al. 1995; Conen 
et al. 2003; Garten and Wullschleger 1999; 
Kravchenko and Robertson 2011). Conen 
et al. (2004) performed a meta-analysis of 
24 temperate and boreal forest sites using 
limited soil data available in the original 
published studies, finding that with 100 soil 
samples and α = 0.05, β = 0.1 settings the 
minimum detectable difference (MDD) in 
SOC in L, O, or A soil horizons over time 

ranged from 0.12 to 2.48 kg C m–2 (0.005 to 
0.105 lb C ft–2).

A convenient way of describing the 
SOC changes that can be detected statis-
tically is through the MDD. The MDD is 
the smallest detectable difference between 
treatment means for specified variation, sig-
nificance level, statistical power, and sample 
size (Kravchenko and Robertson 2011). 
Garten and Wullschleger (1999) examined 
the MDD in SOC for switchgrass plots in 
the southeastern United States, conclud-
ing that detecting changes of 2% to 3% in 
SOC stocks with good statistical power of 
90% (β = 0.10) would require exceedingly 
large sample sizes (n > 100) and that these 
measurement limitations create significant 
challenges for monitoring and verifying C 
sequestration in soils.

The MDDs developed for a specific statis-
tical design (i.e., level of variation, significance 
level, statistical power, and sample size) could 
represent any treatment or combination of 
treatments examined in an experiment with 
the same statistical design. In this study, we 
specifically focus on comparing two treat-
ments of particular importance to SOC 
management. Those are conventional mold-
board plow tillage and conservational tillage, 
specifically no-till. A variety of tillage meth-
ods such as mulch tillage, minimum tillage, 
conservation tillage, and zero tillage have been 
promoted for a variety of reasons, including 
their ability to increase levels of SOC. The 
belief that reduced tillage can sequester C in 
soil and reverse historical patterns of SOC 
loss, however, has been controversial (Baker et 
al. 2007).

Many studies have examined the SOC 
impact of conventional tillage relative to con-
servation tillage (Franzluebbers and Follett 
2005; Kravchenko et al. 2006; Varvel and 
Wilhelm et al. 2010). Most of these reported 
a relative reduction of SOC under conven-
tional tillage at depths of 0 to 15 cm (0 to 5.9 
in), or 0 to 30 cm (0 to 11.8 in) (West and Post 
2002; Baker et al. 2007). However, compara-
tive studies (Franzluebbers and Follett 2005; 
Six et al. 2004; Franzluebbers 2010) that use 
one of the treatments as the SOC baseline 
and measure SOC levels only at the end of 
the study (i.e., two treatment comparisons 
with one sampling event), yield no infor-
mation about the absolute change in SOC 
in the soil profile (Olson 2010; Sanderman 
and Baldock 2010; DeLuca and Zabinski 
2011). If the SOC content was not measured 
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at the start of the tillage experiment (i.e., the 
original SOC baseline is unknown), it is not 
possible to determine if C was sequestered or 
lost under either of the compared treatments 
(Olson 2010; Sanderman and Baldock 2010).

Comparison of no-tillage (NT) with 
conventional tillage tends to yield large rel-
ative rates of SOC accumulation in the top 
part of the soil profile, and this has proba-
bly contributed to the widely held belief 
that NT results in a net increase in SOC. 
However, several studies have found that 
over time NT management increased SOC 
at shallow depths in the soil at the expense 
of SOC in the lower layers, resulting in no 
net increase in SOC within the soil profile 
(Blanco-Canqui and Lal 2008; Christopher 
et al. 2009; David et al. 2009). The decrease 
in SOC at lower depths has been explained 
by reduced incorporation of crop residues 
and less root C input in NT management 
compared to conventional tillage (Baker et 
al. 2007; Yang et al. 2008).

Change in SOC is a dynamic process and 
the rate of SOC is strongly time dependent 
(Six et al. 2004) as well as sensitive to the base-
line level of SOC (Olson 2010; Sanderman 
and Baldock 2010). Agricultural manage-
ment impacts on SOC vary depending on 
local conditions that influence the plant and 
soil processes driving SOC dynamics (Ogle 
et al. 2005). Published data on the impact 
of different management practices on SOC 
are highly variable, largely because of high 
variability in the magnitudes of dynamic pro-
cesses influencing the rate of change of SOC 
in different soils. For field researchers, it is 
important to know not only how many rep-
lications their study should have to achieve a 
certain MDD, but also how long it will take 
for the management practice under the study 
to produce that difference between the treat-
ments. Modeling SOC dynamics provides an 
opportunity to predict the minimum time 
required for a detectable change in SOC to 
occur for a given management practice. Thus, 
statistical power analysis complemented by 
simulation of SOC dynamics provides the 
critical information needed to design an 
experiment with sufficient statistical power 
and duration to accurately evaluate manage-
ment approaches designed to increase SOC 
storage (Smith 2004; Schrumpf et al. 2011).

Applying these techniques comparatively 
across a region can provide insights into how 
different components of site-to-site variabil-
ity impact the detectability of changes in 

SOC stocks and suggest general principles 
that can guide the design of experiments and 
the planning of regional comparison studies.

In this paper we report a study compar-
ing the size of the MDD in SOC across soils 
of the North Central region for the two 
most common types of SOC experiments: 
(1) comparison of two treatments using an 
experiment in a randomized complete block 
design (RCBD); and (2) comparison of 
changes in SOC that take place over time 
under a particular treatment using a ran-
domized complete block design experiment 
with time as an additional factor where SOC 
is measured from each plot at the begin-
ning (baseline) and at the end of the study 
(RCBDtime). We evaluated the size of the 
MDD in SOC for three different levels of 
replication and provided insights into how 
MDD varies across the soil profile and with 
soil properties. We compared the experiment 
duration required to observe those MDDs 
for (1) comparing moldboard plow (MP) and 
NT impacts on SOC at the end of RCBD 
experiments; and (2) investigating changes 
in SOC over time with NT in RCBDtime 
experiments. This was achieved through sim-
ulation of SOC dynamics in corn–soybean 
(Glycine max L.) cropping systems across this 
region. We also report how soil properties 
and crop productivity affect how long an 
SOC study has to last in order to generate 
desirable SOC values, referred further on as 
“required duration.”

Materials and Methods
Data. We obtained estimates of SOC vari-
ability from the measured data using the 
experimental designs at 13 sites across the 
north central United States and used these 
estimates to perform a power analysis. We 
calculated the MDDs for standardized exper-
iments at all sites and examined the effect of 
SOC variability on MDD across the region. 
Soil data were collected at 13 experimental 
sites across 8 states of the US North Central 
region that are a part of the Climate and 
Corn-based Cropping Systems Coordinated 
Agricultural Project (CAP). The location, soil 
properties, and recent land use of the sites are 
described in table 1. The sites are part of corn 
management field trials studying the effects 
of different management practices, including 
tillage (conventional and NT), cover crops 
(with and without winter rye [Secale cereale 
L.] cover crop), and various corn–soybean–
winter wheat (Triticum aestivum) rotations. 

The actual experiments at all sites are set up 
in RCBD with 2 to 6 replications. The SOC, 
bulk density, and soil texture have been mea-
sured at depths of 0 to 10 cm (0 to 3.9 in), 10 
to 20 cm (3.9 to 7.9 in), 20 to 40 cm (7.9 to 
15.7 in), and 40 to 60 cm (15.7 to 23.6 in) 
in spring of 2011. Bulk density was estimated 
using a core method with a minimum of 5 
cm (2 in) diameter core tube. In the topsoil 
the cores were taken using a hand-corer and 
in the deeper layers a hydraulic probe was 
used. The soil texture was measured using 
the hydrometer method. Samples for SOC 
were air dried, crushed and ground, passed 
through 2 mm (0.08 in) sieve, and analyzed 
for SOC by dry combustion using a carbon 
and nitrogen (CN) elemental analyzer. To be 
consistent with the DAYCENT input and 
output files, the SOC concentrations at each 
soil depth were expressed on per area basis 
(g C m–2) using the soil bulk density at the 
corresponding depth as described by Ellert 
et al. (2007).

Power Analyses and Minimum Detectable 
Difference. Detailed descriptions of power 
analysis can be found in texts on statisti-
cal principles and experimental design (Ott 
and Longnecker 2001; Quinn and Keough 
2002; Barker Bausell and Li 2002). Multiple 
examples of its application in agronomy and 
soil science have been published (Yang et 
al. 2008; Kravchenko and Robertson 2011; 
Schrumpf et al. 2011).
The calculation of MDD requires
•	 a	 proposed	 experimental	 design	 (i.e.,	

number of factors, factor levels, replica-
tions, subsamples, and blocking);

•	 the	 estimates	 of	 variance	 components	
relevant to the particular experimental 
design (i.e., block, plot, within-plot vari-
ance) obtained from the analysis of the 
actual experimental data; and

•	 a	desired	probability	of	Type	I	and	Type	II	
errors (the latter determines the statistical 
power of the experiment as [1- β]). 

The MDDs in this study were calcu-
lated with probability for falsely rejecting 
the null hypothesis at α = 0.05 (i.e., statis-
tical significance level) and with probability 
for falsely accepting the null hypothesis at β 
= 0.15, yielding a statistical power of 0.85. 
This indicates that if the difference in SOC 
between	the	treatment	means	is	≥MDD,	and	
the variances of the experiment’s random 
components have been estimated correctly, 
then there is an 85% chance of detecting this 
difference as statistically significant with α 
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Table 1
Soil characteristics, current land uses, and locations of experimental sites. ISUAG = Agricultural Engineering and Agronomy Research Farms. NWREC 
= Northwestern Illinois Agricultural Research and Demonstration Center. SERF = Southeast Research and Demonstration Farm. SWROC B/G = South-
west Research and Outreach Center. 

           Soil
     Soil     Bulk organic
    Crop depth Sand Silt Clay  density carbon cv
Site Location Longitude Latitude rotations (cm) (%) (%) (%) Texture (g cm–3) (g kg–1) (%)

Arlington Arlington, –89.3530 43.2988 C-SB-WW 0 to 10 7.9 70.4 21.7 silt loam 1.34 27.7 19.38
 Wisconsin    10 to 20 7.6 69.7 22.8  1.36 31.0 10.94
     20 to 40 4.1 66.6 29.3  1.38 22.4 20.31
     40 to 60 3.6 63.8 32.67  1.34 20.2 14.16
Bradford 1 Columbia, –92.2019 38.8892 C 0 to 10 11.9 66.3 21.9 silty clay 1.42 14.5 6.01
 Missouri    10 to 20 9.4 62.6 28.8 loam 1.48 9.3 6.11
     20 to 40 16.3 43.8 40.0  1.43 7.0 9.36
     40 to 60 10.0 49.4 40.63  1.59 4.1 14.60
Bradford 2 Columbia, –92.2089 38.9042 C-SB 0 to 10 10.3 69.4 20.3  1.41 16.4 6.55
 Missouri    10 to 20 11.6 62.2 26.3 silty clay 1.46 10.6 6.53
     20 to 40 11.9 45.9 42.3 loam 1.41 8.0 7.02
     40 to 60 10.0 48.8 41.3  1.59 4.6 16.51
Gilmore Gilmore City, –94.4952 42.7477 C-SB 0 to 10 38.5 29.8 31.7 clay loam 0.96 31.5 11.42
 Iowa    10 to 20 36.8 30.3 32.8  1.35 27.9 12.39
     20 to 40 36.5 31.0 32.5  1.42 16.9 12.50
     40 to 60 37.0 30.9 32.2  1.55 15.9 24.79
Hoytville Custar, –83.7667 41.2167 C-SB 0 to 10    clay loam 1.28 18.9 10.15
 Ohio    10 to 20     1.40 16.3 12.00
     20 to 40     1.43 9.2 28.53
     40 to 60     1.42  
ISUAG Boone, –93.7806 42.0094 C-SB 0 to 10 39.5 38.2 22.4 loam and 1.27 23.3 25.23
 Iowa    10 to 20 37.7 36.6 25.7 clay loam 1.51 21.4 21.19
     20 to 40 36.9 37.2 25.9  1.44 15.9 21.13
     40 to 60 38.5 35.8 25.7  1.53 9.6 23.83
Kellogg Hickory  –85.3684 42.4145 C/SB 0 to 10 59.8 11.3 29.0 loam and  1.29 7.9 17.58
 Corners,    10 to 20 56.2 15.1 28.7 sandy 1.43 7.0 25.15
 Michigan    20 to 40 61.8 19.2 19.0 loam 1.44 4.5 64.32
     40 to 60 69.7 16.1 14.0  1.47 2.6 63.17
Marshfield	 Marshfield,	 –90.0982	 44.7610	 C/SB/WW	 0	to	10	 16.1	 69.1	 14.8	 silt	loam	 1.20	 35.0	 9.26
 Wisconsin    10 to 20 16.2 69.4 14.3  1.26 33.4 7.93
     20 to 40 16.2 66.6 17.2  1.46 17.9 25.53
     40 to 60 20.1 54.2 25.7  1.50 12.3 10.73
NWREC Monmouth, –90.7273 40.9308 C-SB-WW 0 to 10 2.47 72.1 25.4 silt loam 1.32 26.6 19.36
 Illinois    10 to 20 2.13 71.1 26.8 and silty 1.44 22.1 14.04
     20 to 40 2.19 71.0 26.8 clay loam  19.6 20.23
     40 to 60 3.28 68.4 28.4   11.2 35.63
SERF Crawfordsville, –91.4829 41.1938 C/SB 0 to 10 13.0 48.4 38.6 silty clay 1.08 31.1 5.70
 Iowa    10 to 20 13.1 48.6 38.3 loam 1.36 28.3 5.95
     20 to 40 13.6 46.0 40.4  1.36 20.6 10.01
     40 to 60 13.2 47.4 39.4  1.40 14.7 13.33
SWROC B Tracy, –95.5383 44.3469 C 0 to 10 7.9 39.6 52.9 silty clay  31.4 12.91
 Minnesota    10 to 20 7.4 39.2 53.8 loam  29.4 12.81
     20 to 40 12.8 38.2 49.5   27.2 21.46
     40 to 60 17.8 35.8 46.8   25.1 19.87
SWROC G Tracy, –95.5504 44.3727 C 0 to 10 13.5 41.0 46.2 silty clay  28.6 19.06
 Minnesota    10 to 20 14.8 39.7 46.0 loam  27.1 20.82
     20 to 40 18.8 37.2 44.3   26.2 21.31
     40 to 60 19.4 37.3 44.0   25.8 23.86
Wooster Wooster, –81.9167 40.7833 C-SB 0 to 10     1.46 16.9 16.84
 Ohio    10 to 20     1.40 13.3 21.50
     20 to 40     1.45 5.5 55.78
     40 to 60     1.41
Notes:	C	=	corn.	SB	=	soybean.	WW	=	winter	wheat.	cv	=	coefficient	of	variance.
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= 0.05. Statistical analyses were performed 
using SAS software, version 9.3 (SAS Institute 
Inc., Cary, North Carolina) using the PROC 
MIXED approach (Stroup 2002) as outlined 
by Kravchenko and Robertson (2011).

In order to obtain the estimates of vari-
ability in SOC between individual plots 
(i.e., residual variance) and blocks (i.e., 
block variance), the RCBD analysis for 
each experimental site was run separately. 
In each analysis all the studied factors, e.g., 
tillage, cover crops, etc., and relevant inter-
actions between the factors were specified 
as fixed effects in the statistical model. Thus 
the obtained estimates of the variance com-
ponents reflected only variability due to 
plots and blocks and became comparable 
between different sites, regardless of the site’s 
specific studied factors. Since our sampling 
strategy did not allow us to assess the tem-
poral variability associated with resampling 
of the same plots, the within-plot variance 
was determined on the basis of previously 
published results as one-fifth of the residual 
variance (Kravchenko et al. 2006). In order 
to reduce the influence of confounding 
site-specific set-up details, the MDDs were 
calculated for standardized experiments at 
each experimental site. The standardization 
of the experiments was achieved through 
the application of the same type of statistical 
design, number of studied factors, their levels, 
and the numbers of blocks and replications.

Specifically, two common experimental sce-
narios in SOC research have been considered:
a) A comparison of two management treat-

ments using an experiment in a RCBD 
where treatments are assigned at random 
to experimental plots within the blocks 
and SOC is measured at each plot at the 
end of the study, followed by comparisons 
between the treatments and conclusions 
on whether or not n-years of the study 
have resulted in differences between the 
treatments in terms of SOC. This type of 
study remains by far the most commonly 
used in SOC research.

b) Comparison of changes in SOC that take 
place over time under a particular treat-
ment using an experiment in a RCBD 
with time as an additional studied factor 
(RCBDtime), where management treat-
ments are assigned at random to experi-
mental plots within the blocks as in (a); 
however, SOC is measured at least twice, 
that is at the beginning of the study (base-
line) and at the end of the study. This 

experimental design allows the RCBD 
treatment comparisons described in (a) 
and also allows the additional comparison 
of changes in SOC that take place over 
time under all studied treatments. This ex-
perimental design can be called RCBD 
with repeated measures, where individ-
ual plots are the subjects for the repeated 
SOC measurements taken in time. How-
ever, since in this study we only consider 
a case with two time points, no formal 
repeated measures analysis was necessary, 
and the data were analyzed using a split-
plot approach with time considered to be 
a subplot factor.
In order to be consistent with typical 

field experiments, in our study we worked 
with two studied experimental factors; e.g., 
the first factor could represent a phase of 
the corn-soybean rotation with two lev-
els (i.e., corn and soybean) and the second 
could represent a tillage treatment with two 
levels (i.e., MP versus NT management). 
The MDDs were calculated for three dif-
ferent replication scenarios: RCBDs with 5, 
10, and 15 replications.

Using standardized experiments allowed us 
to examine the effect of sources of variability 
in field experiments on the MDDs across the 
region without confounding from individual 
site-specific set-up details. The MDD was 
calculated by altering the hypothesized dif-
ferences between the treatment means in the 
PROC MIXED model and calculating the 
statistical power of the standardized experi-
mental design. The hypothesized difference, 
which gave a power value of 0.85, was con-
sidered to be the MDD (Stroup 2002).

In order to analyze the relationship 
between MDD and soil properties, we 
performed a simple linear regression using 
the PROG REG procedure in SAS. All 
relationships were diagnosed for linearity, 
constant variance, outliers, and normality of 
the residuals.

DAYCENT Modeling. We used version 
4.5 of the DAYCENT model to simulate 
SOC dynamics under MP and NT treat-
ments in order to estimate the duration of 
standardized experiments required to gen-
erate the previously calculated MDDs in 
SOC at 0 to 20 cm (0 to 7.9 in) depth. The 
DAYCENT model (Parton et al. 1998; Del 
Grosso et al. 2001; Del Grosso et al. 2002) is 
a terrestrial ecosystem process-based model 
of intermediate complexity widely used to 
simulate SOC and nutrient dynamics and 

trace gas fluxes in crop, grassland, forest, and 
savanna ecosystems. DAYCENT is the daily 
time-step version of the CENTURY model. 
These models have been used extensively to 
simulate the long-term ecosystem responses 
to changes in climate and agricultural man-
agement practices (Parton and Rasmussen 
1994; Del Grosso et al. 2008). DAYCENT is 
currently used for the annual US inventory 
of greenhouse gas emissions and sinks com-
piled by the US Environmental Protection 
Agency (USEPA) (Olander and Huagen-
Kozyra 2011). The model has been shown 
to accurately simulate soil dynamic processes 
when tested against measured data represent-
ing various cropland and grassland systems, 
soil types, and climate parameters (Del 
Grosso et al. 2005; 2008).

DAYCENT includes submodels for plant 
productivity, decomposition of dead plant 
material and soil organic matter, soil water 
and temperature dynamics, and N gas fluxes. 
Flows of C and nutrients are controlled by 
the amount of C in the various pools, the 
nutrient concentrations of the pools, tem-
perature, soil water factors, and soil physical 
properties related to texture (Del Grosso et 
al. 2011). Soil organic matter is simulated 
for the top 20 cm (7.9 in) soil layer and is 
divided into three pools (active, slow, and 
passive) on the basis of decomposition rates. 
The soil organic matter pools are defined 
by their turnover time: 0.5 to 1 year for 
the active pool, 10 to 50 years for the slow 
pool, and 1,000 to 5,000 years for the passive 
pool. The amount of biomass decomposition 
products entering the passive, active, and slow 
pools depends on the clay content of the soil. 
The nutrient flow between pools is further 
controlled by the C and N concentrations 
of the pools, as well as temperature, moisture, 
and soil properties.

The SOC dynamics were simulated for 
20 plots at 6 sites (i.e., Arlington, Bradford 
1, Bradford 2, Gilmore, Agricultural 
Engineering and Agronomy Research 
Farms [ISUAG], and Northwestern Illinois 
Agricultural Research and Demonstration 
Center [NWREC]) that incorporated tillage 
management as a fixed factor in the experi-
mental design. All of the plots were fertilized 
during the corn phase of the rotation. The 
crops were planted in May or June and grain 
was harvested in October or November. All 
biomass residues remained on the soil surface 
following harvest. Weed control was achieved 
through the use of herbicides. Under NT 
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management, all tillage was eliminated from 
the crop management system, the soil was 
left undisturbed from harvest to planting, 
and planting was done through the residues 
of previous plantings. The MP plots were 
plowed in spring to 20 cm (7.9 in). For all 
model runs, site-specific measured weather 
data from 1950 to 2012 were used recur-
sively in simulation up to 1950 and then 
from 1951 to 2300. Mean annual rainfall and 
daily high and low air temperatures are pre-
sented in table 2 for all sites.

The initial SOC pools were generated 
using an almost 4,000 year simulation to bring 
the SOC into equilibrium (–2,000 to 1,800). 
These spin-up simulations used site-specific 
native vegetation (i.e., prairie ecosystem at 
all sites), naturally occurring disturbances, 
and historical land use data. The SOC sim-
ulation proceeded from equilibrium using 
less intensive (i.e., six-year corn–wheat–fal-
low, two-year corn–soybean rotations with 
low fertilizer input) and then more intensive 
(i.e., two-year corn–soybean rotations with 
higher yielding corn varieties and higher fer-
tilizer inputs) site-specific cropping systems 
and management until the year 2009. The 
simulation of tillage treatments in the corn–
soybean rotation started in 2010, at the same 
time that the actual experiments were begun, 
and continued until 2100. The models were 
calibrated using aboveground biomass C, N, 
and harvested grain C measured in 2011, 
and SOC stock at 0 to 20 cm (0 to 7.9 in) 
depth measured in spring of 2011. The per-
formance of DAYCENT calibrated with 
a one-year dataset (i.e., productivity, yield, 
and SOC) was validated against a previ-
ously published 24-year dataset from a site 
that is located in the middle of the studied 
region (Husain et al. 1999; Olson et al. 2005; 
Hussain and Olson 2012; Olson et al. 2013).

Results and Discussion
Power Analyses and Minimum Detectable 
Difference. The SOC levels and their distri-
bution within the soil profile vary a great deal 
among the sites (table 1). From the 13 sites ana-
lyzed, the highest SOC concentrations across 
the soil profile (0 to 60 cm [0 to 23.6 in]) were 
observed at Southwest Research and Outreach 
Center B (SWROC B) (28.3 g kg–1 [0.453 
oz lb–1]), Southwest Research and Outreach 
Center G (SWROC G) (26.9 g kg–1 [0.431 
oz lb–1]) and Arlington (25.3 g kg–1 [0.405 oz 
lb–1]). The lowest SOC levels at 0 to 60 cm (0 
to 23.6 in) were observed at Kellogg (5.5 g kg–1 

Table 2
Climate characteristics across the modeled sites. ISUAG = Agricultural Engineering and Agronomy 
Research Farms. NWREC = Northwestern Illinois Agricultural Research and Demonstration Center.

  Annual mean of Annual mean of
 Annual daily high air daily low air
 precipitation temperature temperature
Site (mm) (°C) (°C)

Arlington 824 13.7 2.2
Bradford 1 1,000 18.4 6.6
Bradford 2 1,000 18.4 6.6
Gilmore 779 14.3 2.2
ISUAG 853 15.2 3.6
NWREC 947 16.7 5.0

[0.088 oz lb–1]), Bradford 1 (8.7 g kg–1 [0.139 
oz lb–1]), and Bradford 2 (9.9 g kg–1 [0.158 oz 
lb–1]). As expected, the SOC concentrations 
decreased with depth at all sites.

Soil organic C generally exhibits high 
variability, and this makes an accurate estima-
tion of the management effects very difficult 
(Gregorich et al. 1995; Conen et al. 2003; 
Kravchenko et al. 2006). The variability is 
an outcome of many processes acting and 
interacting across a continuum of spatial and 
temporal scales (Parkin 1993; Kravchenko et 
al. 2006). Natural variability, resulting from 
pedogenic processes, is related to soil prop-
erties, soil hydrology, field topography, and 
climatic gradients; the extrinsic (i.e., anthro-
pogenic) variability is imposed through the 
agricultural management practices used 
(Cambardella et al. 1994). One measure of 
overall variability of the field data is the coef-
ficient of variation (cv). The highest overall 
variability of SOC (0 to 60 cm [0 to 23.6 
in]) expressed as cv was observed at Kellogg 
(cv = 42.6), Wooster (cv = 31.4), and ISUAG 
(cv = 22.8; table 1). Lower overall SOC vari-
ability was found at the Southeast Research 
and Demonstration Farm (SERF) (cv = 8.7), 
Bradford 1 (cv = 9), and Bradford 2 (cv = 
9.2). The mean variability of the SOC across 
the sites increased with depth from cv of 
13.8 at 0 to 10 cm (0 to 3.9 in) and 13.6 at 
10 to 20 cm (3.9 to 7.9 in) to 24.4 and 23.7 
at 20 to 40 cm (7.9 to 15.7 in), and 40 to 
60 cm (15.7 to 23.6 in) depth, respectively. 
These findings are consistent with Gregorich 
et al. (1995) and Conen et al. (2004).

The variability of SOC exhibited a pos-
itive linear relationship with sand content 
(figure 1a) at 0 to 10 cm (0 to 3.9 in; r 2 = 
0.436 and p < 0.05), 20 to 40 cm (7.9 to 15.7 
in; r 2 = 0.489 and p < 0.05), and 40 to 60 cm 
(15.7 to 23.6 in; r 2 = 0.557 and p < 0.05). It 
was also negatively correlated to clay content 
(figure 1b) at 20 to 40 cm (r 2 = 0.327 and 

p = 0.07), and 40 to 60 cm (r 2 = 0.425 and 
p < 0.05), and silt content (figure 1c) at 10 
to 20 cm (r 2 = 0.484 and p <0.05), and 40 
to 60 cm (r 2 = 0.302 and p = 0.08). These 
relationships indicate that the spatial variabil-
ity of SOC is to some extent controlled by 
the proportion of sand, silt, and clay in the 
soil profile. A control of natural variability of 
soil texture over SOC variability has been 
reported by Cambardella et al. (1994) and 
others (Hook and Burke 2000; Kravchenko 
et al. 2006) and is likely a result of the phys-
ical protection of soil organic matter and its 
associated effect on the turnover rates (Burke 
et al. 1989). The relationships also imply that 
sandy soils are likely to exhibit higher SOC 
variability than clay and silty soils.

Minimum Detectable Difference in Soil 
Organic Carbon. The first standardized 
experiment was designed as a comparison 
of two treatments in a RCBD experiment. 
Across all sites, the mean MDD at 0 to 10 cm 
(0 to 3.9 in) depth with 5 replications was 
3.38 g C kg–1 (0.054 oz C lb–1), and ranged 
from 1.04 g C kg–1 (0.017 oz C lb–1) (Bradford 
2) to 7.15 g C kg–1 (0.114 oz C lb–1) (ISUAG; 
table 3). As expected and reported previously 
(Conen et al. 2004; Yang et al. 2008), the size 
of the MDD decreased with the number of 
replications, e.g., the mean MDD between 
two treatments replicated 10 times was 2.27 
g C kg–1 (0.036 oz C lb–1) and when repli-
cated 15 times the MDD was only 1.83 g 
C kg–1 (0.029 oz C lb–1). The means of the 
MDD at 10 to 20 cm (3.9 to 7.9 in) with 5, 
10, and 15 replications were 3.04, 2.05, and 
1.65 g C kg–1 (0.049, 0.033, and 0.026 oz 
C lb–1) respectively. The smallest differences 
were again at Bradford 1 (from 0.84 g C kg–1 
[0.013 oz C lb–1] with 5 replications to 0.45 
g C kg–1 [0.007 oz C lb–1] with 15 replica-
tions) and the highest at ISUAG (from 5.35 
g C kg–1 [0.086 oz C lb–1] with 5 replica-
tions to 2.9 g C kg–1 [0.046 oz C lb–1] with 15 
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Figure 1
Linear regression relationships between soil organic carbon (SOC) variability expressed as a 
coefficient of variation (cv) and percentage (a) sand, (b) clay, and (c) silt properties at various 
sampling depths.
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replications). The magnitude of these MDDs 
agrees well with MDDs calculated for a treat-
ment comparison in corn–soybean cropping 
systems on silty loam and clay loam soils in 
Canada and on silt loam soils in Illinois (Yang 
et al. 2008). When expressed as a percentage 
of the SOC baseline, across all sites, the means 
of the MDD between two treatments rep-
licated 5, 10, and 15 times were 15%, 10%, 
and 8%, respectively (table 3), and equally the 
mean MDDs at 10 to 20 cm (3.9 to 7.9 in) 
between two treatments replicated 5, 10, and 
15 times were 15%, 10%, and 8%, respectively.

The second standardized experiment 
was designed as a comparison of change in 
SOC over time for a particular treatment 
(RCBDtime experiment). In this experi-
ment, the MDD in SOC was based on SOC 
variability within the same plot (i.e., with-
in-plot variability). Resampling of the same 
plots generally results in lower spatial vari-
ability compared to sampling different plots 
even within the same block. As a result of 
reduced spatial variability in SOC (table 3), 
the MDDs calculated for the SOC change 
over time under a particular treatment in 
RCBDtime were considerably smaller than 
MDDs in SOC between two treatments in 
RCBD. At 0 to 10 cm (0 to 3.9 in) depth, 
across the sites, the mean MDD in SOC over 
time under a particular treatment replicated 5 
times was 1.48 g C kg–1 (0.024 oz C lb–1), and 
ranged from 0.46 g C kg–1 (0.007 oz C lb–1) 
(Bradford 2) to 3.12 g C kg–1 (0.050 oz C lb–1) 
(ISUAG). The size of the MDD in this com-
parison also decreased with the number of 
replications. At 10 to 20 cm (3.9 to 7.9 in), the 
means of the MDD in SOC over time with 
treatment replicated 5, 10, and 15 times were 
1.33, 0.91, and 0.73 g C kg–1, (0.021, 0.015, 
and 0.012 oz C lb–1) respectively. The smallest 
differences were again estimated for Bradford 
1 (from 0.37 g C kg–1 [0.006 oz C lb–1] with 
5 replications to 0.2 g C kg–1 [0.003 oz C 
lb–1] with 15 replications) and the highest for 
ISUAG (from 2.34 g C kg–1 [0.037 oz C lb–1] 
with 5 replications to 1.29 g C kg–1 [0.021 oz 
C lb–1] with 15 replications). When expressed 
as a percentage of the SOC baseline, at 0 to 
10 cm depth, the means of the MDD in SOC 
over time under a particular treatment repli-
cated 5, 10, and 15 times were 6%, 4%, and 
4%, respectively (table 3). Similarly, at 10 to 20 
cm, the mean MDDs in SOC over time with 
5, 10, and 15 replications were 7%, 5%, and 
4%, respectively.
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Table 3
Minimum detectible difference (MDD) in soil organic carbon (SOC) at α = 0.05 and power of 0.85 (β = 0.15) calculated for two contrasting compari-
sons in two standardized experiments at each experimental site: the comparison of two treatments using an experiment in a randomized complete 
block design (RCBD) and the comparison of changes in SOC that take place over time under a particular treatment using a randomized complete 
bock design experiment with time as an additional factor, where SOC is measured from each plot at the beginning (baseline) and at the end of the 
study. The MDDs were calculated for three different replication scenarios. ISUAG = Agricultural Engineering and Agronomy Research Farms. NWREC 
= Northwestern Illinois Agricultural Research and Demonstration Center. SERF = Southeast Research and Demonstration Farm. SWROC B/G = South-
west Research and Outreach Center. 

Statistical Randomized complete block design    Randomized complete block design over time
design (difference in SOC between two treatments)   (change in SOC over time)

Number of 
replications 5  10  15  5  10  15

 MDD MDD MDD MDD MDD MDD MDD MDD MDD MDD MDD MDD g
Site (% SOC) (g C kg–1) (% SOC) (g C kg–1) (% SOC) (g C kg–1) (% SOC) (g C kg–1) (% SOC) (g C kg–1) (% SOC) (g C kg–1)

0 to 10 cm
 Arlington  0.16 4.29 0.10 2.88 0.08 2.32 0.07 1.87 0.05 1.28 0.04 1.03
 Bradford 1 0.09 1.35 0.06 0.91 0.05 0.73 0.04 0.59 0.03 0.40 0.02 0.33
 Bradford 2 0.06 1.04 0.04 0.70 0.03 0.57 0.03 0.46 0.02 0.31 0.02 0.25
 Gilmore 0.11 3.59 0.08 2.42 0.06 1.95 0.05 1.57 0.03 1.07 0.03 0.87
 Hoytville 0.10 1.83 0.07 1.23 0.05 0.99 0.04 0.80 0.03 0.54 0.02 0.44
 ISUAG 0.31 7.15 0.21 4.80 0.17 3.87 0.13 3.12 0.09 2.13 0.07 1.72
 Kellogg 0.26 2.08 0.18 1.40 0.14 1.13 0.12 0.91 0.08 0.62 0.06 0.50
	 Marshfield	 0.14	 4.85	 0.09	 3.26	 0.08	 2.63	 0.06	 2.12	 0.04	 1.44	 0.03	 1.17
 NWREC 0.20 5.32 0.13 3.58 0.11 2.88 0.09 2.32 0.06 1.58 0.05 1.28
 SERF 0.07 2.13 0.05 1.43 0.04 1.15 0.03 0.93 0.02 0.63 0.02 0.51
 SWROC B 0.16 5.15 0.11 3.46 0.09 2.79 0.07 2.25 0.05 1.53 0.04 1.24
 SWROC G 0.10 2.93 0.07 1.98 0.06 1.59 0.04 1.28 0.03 0.88 0.02 0.71
 Wooster 0.13 2.20 0.09 1.48 0.07 1.19 0.06 0.96 0.04 0.66 0.03 0.53
10 to 20 cm
 Arlington  0.13 3.88 0.08 2.60 0.07 2.09 0.05 1.69 0.04 1.15 0.03 0.93
 Bradford 1 0.09 0.83 0.06 0.56 0.05 0.45 0.04 0.37 0.03 0.25 0.02 0.20
 Bradford 2 0.08 0.86 0.05 0.58 0.04 0.47 0.04 0.38 0.02 0.26 0.02 0.21
 Gilmore 0.14 4.02 0.10 2.71 0.08 2.18 0.06 1.76 0.04 1.20 0.03 0.97
 Hoytville 0.12 2.03 0.08 1.36 0.07 1.10 0.05 0.88 0.04 0.60 0.03 0.49
 ISUAG 0.25 5.35 0.17 3.60 0.14 2.90 0.11 2.34 0.07 1.60 0.06 1.29
 Kellogg 0.31 2.17 0.21 1.46 0.17 1.18 0.14 0.95 0.09 0.65 0.07 0.52
	 Marshfield	 0.11	 3.58	 0.07	 2.41	 0.06	 1.94	 0.05	 1.56	 0.03	 1.07	 0.03	 0.86
 NWREC 0.17 3.82 0.12 2.57 0.09 2.07 0.08 1.67 0.05 1.14 0.04 0.92
 SERF 0.05 1.47 0.03 0.99 0.03 0.79 0.02 0.64 0.02 0.44 0.01 0.35
 SWROC B 0.18 5.28 0.12 3.56 0.10 2.86 0.08 2.31 0.05 1.57 0.04 1.27
 SWROC G 0.09 2.55 0.06 1.71 0.05 1.38 0.04 1.11 0.03 0.76 0.02 0.61
 Wooster 0.28 3.70 0.19 2.49 0.15 2.01 0.12 1.62 0.08 1.10 0.07 0.89
20 to 40 cm
 Arlington  0.29 6.51 0.20 4.38 0.16 3.52 0.13 2.84 0.09 1.94 0.07 1.57
 Bradford 1 0.15 1.04 0.10 0.70 0.08 0.56 0.06 0.45 0.04 0.31 0.04 0.25
 Bradford 2 0.10 0.79 0.07 0.53 0.05 0.43 0.04 0.35 0.03 0.24 0.02 0.19
 Gilmore 0.18 3.02 0.12 2.03 0.10 1.64 0.08 1.32 0.05 0.90 0.04 0.73
 Hoytville 0.45 4.17 0.30 2.80 0.25 2.26 0.20 1.82 0.13 1.24 0.11 1.00
 ISUAG 0.25 4.01 0.17 2.70 0.14 2.17 0.11 1.75 0.08 1.20 0.06 0.97
 Kellogg 0.53 2.39 0.36 1.60 0.29 1.29 0.23 1.04 0.16 0.71 0.13 0.57
	 Marshfield	 0.41	 7.32	 0.28	 4.92	 0.22	 3.97	 0.18	 3.20	 0.12	 2.18	 0.10	 1.76
 NWREC 0.27 5.24 0.18 3.53 0.14 2.84 0.12 2.29 0.08 1.56 0.06 1.26
 SERF 0.12 2.47 0.08 1.66 0.07 1.34 0.05 1.08 0.04 0.74 0.03 0.59
 SWROC B 0.26 6.98 0.17 4.69 0.14 3.78 0.11 3.05 0.08 2.08 0.06 1.68
 SWROC G 0.11 2.99 0.08 2.02 0.06 1.63 0.05 1.31 0.03 0.89 0.03 0.72
 Wooster 0.70 3.85 0.47 2.59 0.38 2.09 0.31 1.68 0.21 1.15 0.17 0.93
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Table 3 continued
Statistical Randomized complete block design    Randomized complete block design over time
design (difference in SOC between two treatments)   (change in SOC over time)

Number of 
replications 5  10  15  5  10  15

 MDD MDD MDD MDD MDD MDD MDD MDD MDD MDD MDD MDD g
Site (% SOC) (g C kg–1) (% SOC) (g C kg–1) (% SOC) (g C kg–1) (% SOC) (g C kg–1) (% SOC) (g C kg–1) (% SOC) (g C kg–1)

40 to 60 cm
 Arlington  0.23 4.59 0.15 3.09 0.12 2.49 0.10 2.01 0.07 1.37 0.05 1.11
 Bradford 1 0.19 0.78 0.13 0.53 0.10 0.42 0.08 0.34 0.06 0.23 0.05 0.19
 Bradford 2 0.23 1.06 0.15 0.72 0.12 0.58 0.10 0.46 0.07 0.32 0.06 0.26
 Gilmore 0.35 5.63 0.24 3.80 0.19 3.05 0.16 2.47 0.11 1.68 0.09 1.36
 Hoytville — — — — — — — — — — — —
 ISUAG 0.36 3.43 0.24 2.31 0.19 1.86 0.16 1.50 0.11 1.02 0.09 0.83
 Kellogg 0.67 1.77 0.45 1.19 0.36 0.96 0.29 0.77 0.20 0.53 0.16 0.43
	 Marshfield	 0.16	 2.01	 0.11	 1.35	 0.09	 1.09	 0.07	 0.88	 0.05	 0.60	 0.04	 0.48
 NWREC 0.44 4.96 0.30 3.33 0.24 2.69 0.19 2.17 0.13 1.48 0.11 1.19
 SERF 0.04 0.66 0.03 0.44 0.02 0.36 0.02 0.29 0.01 0.20 0.01 0.16
 SWROC B 0.23 5.65 0.15 3.80 0.12 3.06 0.10 2.47 0.07 1.68 0.05 1.36
 SWROC G 0.11 2.91 0.08 1.96 0.06 1.58 0.05 1.27 0.03 0.87 0.03 0.70

As expected, for both standardized experi-
ments, the calculated MDDs were correlated 
with the variability of SOC at the experi-
mental sites, i.e., the MDDs calculated for 
sites with higher SOC variability (e.g., 
Kellogg and ISUAG) were higher than those 
calculated for sites with low SOC variability 
(e.g., Bradford 1 and 2). Since the observed 
SOC variability increased with depth (table 
1) for both experiments, the MDDs at 20 to 
40 cm (15.7 to 23.6 in) and 40 to 60 cm 
(15.7 to 23.6 in) were higher than those cal-
culated for the soil surface layers. The MDD 
between two treatments in RCBD at 20 to 
40 cm (15.7 to 23.6 in) ranged from 10% 
to 70% of SOC levels with 5 replications. 
When expressed as absolute values, the size 
of the MDDs between two treatments at 
this depth ranged from 0.79 to 7.32 g C kg–1 
(0.013 to 0.117 oz C lb–1) with 5 replications. 
That the uncertainty associated with detect-
ing SOC increases with depth as a result of 
the greater natural SOC variability at depth 
has been observed also by Yang at el. (2008), 
who reported that up to 1,460 soil samples 
per treatment in comparison would have to 
be collected to observe statistically signifi-
cant change in SOC at subplow depths at 
three experimental sites under corn–soybean 
cropping systems in the United States and 
Canada, while it would require only 22 soil 
samples per treatment comparison at a depth 
of 0 to 5 cm (0 to 2 in).

The MDD has different practical signifi-
cance at different soil depths since the SOC 
in deeper layers is much less affected by the 

management practices and is also subject to 
lower turnover rates (Fontaine et al. 2007). 
This means that a particular change in SOC 
(e.g., 20%) might occur in a considerably 
shorter period of time in the surface layers 
compared to deeper soil layers.

Linear regression analyses between the 
size of MDD and selected soil properties are 
shown in figure 2. The relationships pre-
sented here were observed with the MDD 
between two treatments in RCBD repli-
cated 5 times. The MDD was positively 
correlated to SOC concentration at all soil 
depths: at 0 to 10 cm (0 to 3.9 in; r 2 = 0.304, 
p = 0.05), at 10 to 20 cm (3.9 to 7.9 in; r 2 
= 0.288 and p = 0.06), at 20 to 40 cm (7.9 
to 15.7 in; r 2 = 0.321 and p < 0.05), and 
at 40 to 60 cm (15.7 to 23.6 in; r 2 = 0.341 
and p = 0.06; figure 2a). This implies that 
to be detected, the change in SOC due to 
treatment effect has to be considerably larger 
in soils with high SOC compared to those 
with low SOC. This agrees with the findings 
of Connen et al. (2004), who reported that 
SOC rich sites require relatively more sam-
ples in order to detect a fixed size change in 
SOC than SOC poor sites.

The MDD expressed as a proportional 
difference from the baseline was shown to be 
affected by soil texture (figure 2). The MDD 
was positively related to sand content at 0 to 
10 cm (0 to 3.9 in; r 2 = 0.333 and p = 0.06), 
at 10 to 20 cm (3.9 to 7.9 in; r 2 = 0.509 
and p < 0.05), and at 40 to 60 cm (15.7 to 
23.6 in; r 2 = 0.477 and p < 0.05) depth. The 
relationships with silt content at 10 to 20 cm 

(0 to 3.9 in; r 2 = 0.369 and p < 0.05) and 
clay content at 20 to 40 cm (7.9 to 15.7 in; 
r 2 = 0.609 and p < 0.05), and 40 to 60 cm 
(15.7 to 23.6 in; r 2 = 0.583 and p < 0.05) 
depth were negative. This simply confirms 
that sandy soils have higher SOC variabil-
ity, as was shown above, and this variability 
translates into larger MDDs relative to clay 
and silt soils in which a smaller SOC change 
will be significant. The strength of the rela-
tionships with soil texture and thus their 
explanatory power increased with soil depth. 
The stronger relationships with soil texture 
in the deeper, undisturbed soil layers suggest 
that in the absence of soil disturbance soil 
texture is one of the major factors control-
ling the variability of SOC and thus the size 
of the MDD.

DAYCENT Modeling. Accurate sim-
ulation of SOC dynamics requires a 
well-calibrated model. The calibration of the 
DAYCENT model was validated against a 
previously published 24-year dataset (Husain 
et al. 1999; Olson et al. 2005; Hussain and 
Olson 2012; Olson et al. 2013). The valida-
tion exercise indicated a good fit between 
model predictions and measured data. 
Simulated corn/soybean yields (r 2 = 0.839, p 
< 0.001, and n = 24) and SOC (r 2 = 0.675, p 
< 0.05, and n = 8) under NT, and simulated 
corn/soybean yields (r 2 = 0.806, p < 0.001, 
and n = 24) and SOC (r 2 = 0.848, p < 0.001, 
and n = 8) under MP were well correlated 
with observed values.

DAYCENT simulations of SOC dynam-
ics at 0 to 20 cm (0 to 7.9 in) predicted an 
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Figure 2
Linear relationship between minimum detectable difference (MDD) in soil organic carbon (SOC) and (a) SOC at various sampling depths, and be-
tween MDD as a proportional difference from the SOC baseline (%) and selected soil properties at various sampling depths: (b) sand, (c) clay, and 
(d) silt.
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annual increase under NT and an annual 
decrease under MP management at most of 
the sites (table 4). The largest rate of SOC 
increase under NT was predicted at Arlington 
(23.29 g m–2 [0.076 oz ft–2]) and the lowest at 
the Bradford sites (3.47 and 3.3 g m–2 [0.011 
and 0.011 oz ft–2]). The pattern of SOC 
change under MP was similar, with the largest 
negative rates of SOC change predicted at the 
Bradford sites (–9.88 and –10.23 g m–2 [0.032 
and 0.034 oz ft–2]), and Arlington was the only 
site with an annual increase in SOC under 
MP management (13.35 g m–2 [0.044 oz 
ft–2]). The rate of SOC change in the surface 
soil layer is a function of crop productivity 
and more importantly the amount of bio-

mass input to the soil (Duiker and Lal 1999; 
Freibauer et al. 2004; Smith 2004). The larger 
annual increase in SOC under both manage-
ments at Arlington site corresponds to the 
high net primary productivity (NPP) at this 
site which results in high biomass inputs to 
the soil relative to the other sites (table 4). The 
simulated NPP, and consequently the biomass 
inputs to the soil, were considerably lower at 
the Bradford sites, and this likely led to the 
smaller annual C sequestration rates under 
NT and the larger annual SOC losses under 
MP at Bradford relative to the other sites.

Simulated rates of SOC change (g m–2 

y–1) under NT and MP management were 
compared with rates computed for sev-

eral previously published long-term tillage 
experiments (Dick et al. 1997; Halvorson 
et al. 1997; Hendrix 1997; Lyon et al. 1997; 
Pierce and Fortin 1997; Olson 2010) as 
shown in table 5. The computed rates of 
SOC change in the top 20 cm (7.9 in) under 
NT management were highly variable, rang-
ing from –74.91 g m–2 (0.246 oz ft–2) in fine 
silty soils (40% sand) in Nebraska, to 41.9 g 
m–2 (0.137 oz ft–2) in silty loam (30% sand) in 
Colorado. The rates of SOC change under 
MP management ranged from –155.27 g 
m–2 (0.509 oz ft–2) in Nebraska to 4.52 g 
m–2 (0.015 oz ft–2) in Colorado. Although 
the range of rates observed across the sites 
is wide, the rates of SOC change simulated 
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using DAYCENT were in good agree-
ment with these results (table 4). Simulated 
amounts of biomass residue across the sites 
(table 5) were also comparable with amounts 
previously reported for conventional tillage 
(153 to 414 g C m–2 [0.502 to 1.358 oz C 
ft–2] by Buyanovsky and Wagner [1997]; 347 
g C m–2 [1.138 oz C ft–2] by Vanotti et al. 
[1997]; and 259 g C m–2 by [0.850 oz C ft–2] 
Huggins and Fuchs [1997]) and NT manage-
ment (265 to 348 g C m–2 by Halvorson et al. 
[1997]) under the same climatic conditions.

Simulation of SOC dynamics over time 
allowed us to estimate for sites across the 
north central United States the duration 
of the standardized experiments required 
in order to detect a statistically significant 
change in SOC (i.e., the MDD). The esti-
mated duration for both experiments (i.e., 
comparing the effect of MP and NT man-
agement on SOC and change in SOC over 
time under NT) varied among the sites and 
also among individual plots (table 6). 

For comparison of two treatments rep-
licated 5 times in RCBD, the required 
experiment duration ranged from 8 years at 
the Bradford sites to more than 100 years at 
the ISUAG site. An increase in the number 
of replications reduced the required length 
of the experiment, e.g., the experiment at 
ISUAG comparing two treatments would 
have to be run for 55 years with 10 replica-
tions, but only 34 years with 15 replications. 
In order to detect an increase in SOC over 
time under NT management, an experiment 
with 5 replications would be required to run 
for at least 11 years at Arlington and 71 years 

Table 4
Predicted mean net primary productivity (NPP), biomass characteristics, and change in SOC (Δ SOC ) over first 100 years for no-tillage (NT) and mold-
board plow tillage (MP) treatment at selected experimental sites using DAYCENT.

   SOC at   Above Below   Biomass
  Year of 0 to 20 cm   ground ground Grain Biomass inputs Δ SOC at
 Native plowing in 2010 Tillage NPP biomass biomass yield residues into soil 0 to 20 cm
Site vegetation out (g m2) treatment (g C m–2) (g C m–2) (g C m–2) (g C m–2) (g C m–2) (g C m–2) (g m–2 y–1)

Arlington Prairie 1900 7,929.26 NT 709.25 572.51 136.74 255.26 317.25 453.99 23.29
    MP 833.52 672.97 160.55 315.75 357.22 517.77 13.35
Bradford 1 Prairie 1900 3,687.97 NT 530.75 445.59 85.16 154.57 291.02 376.18 3.47
    MP 450.62 379.84 70.78 130.78 249.06 319.84 –10.23
Bradford 2 Prairie 1900 3,944.26 NT 542.57 454.57 88.00 143.62 310.94 398.95 3.30
    MP 467.92 392.99 74.94 124.21 268.78 343.72 –9.88
Gilmore Prairie 1900 7,372.48 NT 543.77 459.75 84.02 194.95 264.80 348.82 6.66
    MP 588.85 498.59 90.26 211.82 286.77 377.03 –4.67
ISUAG Prairie 1800 6,810.30 NT 606.90 512.12 94.78 219.52 292.61 387.38 8.28
    MP 616.69 522.27 94.42 215.71 306.56 400.98 –5.90
NWREC Prairie 1850 6,200.10 NT 667.37 553.19 114.18 259.52 293.67 407.84 10.18
    MP 777.21 653.54 123.66 324.34 329.20 452.87 –4.88

at ISUAG. The required experiment duration 
with 10 and 15 replications is 8 and 7 years, 
respectively, at the Arlington site, and 30 and 
24 years, respectively, at ISUAG site. For both 
experiments, the longest experiment dura-
tions were predicted at the ISUAG site and 
were associated with high MDDs that were, 
in turn, the result of the high SOC variability 
at this site. In the same way, low SOC vari-
ability, and consequently small MDDs, at the 
Brandford sites resulted in a relatively short 
time needed to detect the MDD in SOC 
between treatments as well as over time.

It may seem counterintuitive that it takes 
less time to detect a change in SOC over 
time under NT than to detect a difference in 
SOC between NT and MP, particularly since 
MP generally decreases SOC. This appar-
ent contradiction results primarily from the 
difference in the statistical design and asso-
ciated random sources of variability used in 
the statistical testing. The effects of the two 
treatments are necessarily investigated by 
comparing across multiple plots in a RCBD. 
The change in SOC over time, on the other 
hand, is investigated by comparing the SOC 
levels at two different points in time for the 
same RCBD plots (i.e., the baseline SOC 
in a plot is compared with the SOC in that 
same plot at the end of the experiment). As 
discussed above, the resampling of the same 
plots leads to much lower spatial variability, 
and consequently smaller MDDs relative to 
sampling multiple different plots within the 
same block. Another contributing factor is 
that the DAYCENT model predicted higher 
crop productivity under MP compared to 

NT management at most of the sites (e.g., 
Arlington, NWREC, ISUAG, and Gilmore) 
and consequently higher biomass input to 
the soil under MP. This increased C input 
to the soil partially offset the SOC loss due 
to the soil disturbance and enhanced min-
eralization associated with MP, resulting in 
smaller differences in SOC between NT and 
MP tillage.

The estimates of experiment duration were 
found to be correlated with soil properties 
and crop productivity (figure 3). The rela-
tionships presented are derived based on the 
standardized experiments with 5 replications. 
The duration of the RCBDtime experiment 
designed to examine SOC change under NT 
over time was positively correlated with sand 
content (r2 = 0.462 and p < 0.05 [figure 2a]) 
and negatively correlated to silt content (r2 = 
0.435 and p < 0.05). In contrast, the duration 
of RCBD experiment designed to com-
pare the effect of MP and NT managements 
on SOC was positively influenced by annual 
NPP (r2 = 0.712 and p < 0.05), the amount 
of residues left on the surface annually (r2 = 
0.611 and p < 0.05), and the level of SOC (r2 = 
0.393 and p < 0.05) in the MP treatment. The 
change in SOC is a function of NPP and the 
amount of crop input to the soil (Duiker and 
Lal 1999; Freibauer et al. 2004; Smith 2004). 
Consequently, an increase in the amount of C 
input under MP treatment partially offsets the 
effect of soil disturbance and leads to a trend in 
the SOC dynamics similar to that under NT 
management. As a result, an increase in NPP 
has a positive effect on the experiment dura-
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Table 5
A summary of previously published long-term studies on change in SOC (Δ SOC) under moldboard low tillage (MP) and (NT) no-tillage management.

   Duration
   of the    Sampling Initial Δ SOC Δ SOC
   study  Crop  depths SOC under MP Under NT
Site Location Reference years Years rotations Soil texture (cm) (g C m–2) (g m–2 y–1) (g m–2 y–1)

Wooster Ohio Dick 1983; 18 1962 to C or C-SB Silt loam 0 to 22.5 4,505* –57.20 –26.81
  Dick et al.   1980 or C-O (25% sand,
  1997    15% clay)
Hoytville Ohio Dick 1983;  18 1962 to C or C-SB Silty clay 0 to 22.5 6,935* –46.90 1.68
  Dick et al.  1980 or C-O loam soil
  1997    (21% sand,
      40% clay)
Horseshoe Georgia, Hendrix 8 1982 to Sorghum Fine loamy 0 to 5 1,815 0.27 0.75
   Bend Piedmont 1997  1990 or Glycine (66% sand, 5 to 15 1,661 3.07 3.34
     – Secale 22% clay)
     or Trifolium
High Plains  Sidney, Lyon et al. 20 1970 to WW Fine silt 0 to 10 2,225 –24.88 0.06
   Lab. Side C Nebraska 1997  1990  (40% sand, 10 to 20 1,907 2.25 –6.00
      25% clay)
High Plains Sidney, Lyon et al. 20 1970 to WW Fine silt 0 to 10 2,225 –99.09 –16.00
   Lab. Side D Nebraska 1997  1990  (40% sand, 10 to 20 1,907 –56.18 –58.91
      25% clay)
Central Akron, Halvorson 13 1979 to WW Silt loam 0 to 5 509 0.75 9.36
   Great Colorado et al. 1997  1991  (30% sand, 5 to 10 505 –3.18 8.60
   Plains Res.      30% clay) 10 to 20 886 –4.36 16.20
   Station–
   North
Central Akron, Halvorson 13 1979 to WW Silt loam 0 to 5 496 5.81 18.98
   Great Colorado et al. 1997  1991  (30% sand, 5 to 10 445 –0.26 10.47
   Plains Res.      30% clay) 10 to 20 838 –1.03 12.46
   Station–
   South
Michigan East Pierce and 13 1980 to C + CC Fine loamy 0 to 5 294 –7.75 –11.75
   State Lansing, Fortin 1997  1993 until 1988,  5 to 10 262 –7.00 –15.75
   University Michigan    then C-SB  10 to 15 253 –11.50 –11.75
       15 to 20 246 –13.25 –10.00
Dixon  Illinois Olson 2010 20 1988 to C, C-SB Silt loam 0 to 15 2,850 –53.50 –16.50
   Springs    2009   15 to 75 2,360 –22.00 –17.50
   Agricultural 
   Research 
   Center
Notes: C = corn. SB = soybean. O = oats. WW = winter wheat. CC = cover crop in the crop rotation.
* Soil organic C stock was calculated using bulk densities measured in 2011.

tion required to achieve the MDD in SOC 
between MP and NT management.

Summary and Conclusions
The regional comparison reported here 
illustrates that the MDD in SOC, whether 
between two treatments or estimated for a 
single treatment over time, was highly vari-
able across the north central United States. 
Similarly, simulation of SOC dynamics pre-
dicted large differences across the region in 
the experiment duration required to detect 

tillage induced SOC changes in corn–soy-
bean systems. The MDD in SOC, and time 
required to observe it, decreased with the 
number of experimental replications and 
were affected by variability of SOC at an 
experimental site, which was in turn related 
to soil properties at the site resulting from 
pedogenic and anthropogenic processes, 
including soil texture, crop productivity, and 
the amount of crop residue deposited on the 
soil surface annually.

Given the large variability in soil texture, 
SOC levels, and crop yields across agricultural 
regions, statistically powerful experiments 
that have a good probability of detecting a 
difference in SOC in a reasonable amount of 
time will also vary significantly from location 
to location. Unfortunately, the experimental 
design and number of replications are often 
simply patterned after a common practice, 
rather than being specifically tailored to what 
is needed in a particular location and situa-
tion. The temptation to let available funding 
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Table 6
Estimated duration of the standardized SOC experiments at selected sites. The experiment duration was estimated for two SOC comparisons in  
a corn–soybean rotation: comparing moldboard plow tillage (MP) and no-tillage (NT) management impacts on SOC at the end of randomized  
complete block design (RCBD) experiments and investigating changes in SOC over time under NT in RCBD experiments with time as an additional  
factor (i.e., SOC change from the baseline to the end of the experiment). The duration of the experiments was estimated for three different  
scenarios: 5, 10, and 15 replications. ISUAG = Agricultural Engineering and Agronomy Research Farms. NWREC = Northwestern Illinois Agricultural 
Research and Demonstration Center. 

Statistical RCBD      RCBD with time
design (comparison of NT and MP treatments)   (change in SOC over time under NT)

Number of
replications 5  10  15  5  10  15

  Mean  Mean  Mean  Mean  Mean  Mean
 MDD duration ± MDD duration ± MDD duration ± MDD duration ± MDD duration ± MDD duration ±
 (g C m–2) SD (y) (g C m–2) SD (y) (g C m–2) SD (y) (g C m–2) SD (y) (g C m–2) SD (y) (g C m–2) SD (y)

Arlington 1,102 65 ± 15.7 740 45 ± 2.8  596 36 ± 7.3 480 11 ±0.0 328 8 ±1.2 265 7 ± 0.0
Bradford 1 315 8 ± 0.5 212 7 ± 0.6 171 6 ± 0.1 138 25 ± 14.1 94 15 ± 0.0 76 13 ± 2.1
Bradford 2 274 8 ± 0.2 184 7 ± 0.5 148 5 ± 0.1 120 23 ± 11.1 82 21 ± 12.1 66 21 ± 12.3
Gilmore 890 58 ± 37.4 600 31 ±7.1 483 23 ± 2.8 389 40 ± 20.3 265 24 ± 10.1 215 19 ± 5.3
ISUAG 1,713 >100 1,151 55 ± 10.3 927 34 ± 2.8 749 71 ± 17.7 510 30 ± 2.6 413 24 ± 1.7
NWREC 1,250 80 ±10.7 842 29 ± 3.9 678 24 ± 5.1 546 27 ± 4.6 372 14 ± 1.8 301 12 ± 0.5

define experimental effort and to assume 
that choosing an appropriate significance 
level for statistical analyses will yield mean-
ingful results is strong. In the analysis of SOC, 
however, this may lead to a large number of 
experiments that are designed to fail. This 
not only wastes scarce resources, it can lead 
to errors in our understanding of terrestrial 
C cycling.

The relationships and methods described 
here enable the design of powerful SOC 
experiments that have the maximum chance 
of detecting true treatment effects and 
enhancing our understanding of how man-
agement practices influence SOC storage. 
Researchers should use available SOC data 
and the relationships between SOC vari-
ation and soil properties defined here to 
design SOC experiments that have a good 
chance of detecting a change in SOC in a 
reasonable amount of time. We recommend 
simulation of SOC dynamics to estimate the 
time required for a MDD in SOC to occur 
under or between management practices. In 
combination, statistical power analysis and 
simulation of SOC dynamics yield critical 
information to guide the design statistically 
powerful experiments that can provide deci-
sive results in a practical period of time.
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Figure 3
(a) and (b) show the linear relationships between the duration of a five-replicate RCBDtime standardized experiment and soil texture; (c), (d), (e) 
show linear relationships between the duration of a five-replicate randomized complete block design (RCBD) standardized experiment and net  
primary productivity (NPP), annual amount of crop residues left on the soil surface, and SOC level at 0 to 20 cm. All the relationships are significant 
at p < 0.05.
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