FIELD EXPERIMENT HISTORY

Title: Sweet Corn Stand Reduction

Experiment: 16Sweet Trial ID: 6421 Year: 2019

Personnel: Joe Lauer, Thierno Diallo, Kent Kohn.

Location: Arlington, WI County: Columbia

Supported By: HATCH, National Crop Insurance Services.

Site Information

Field: ARS 375 Previous Crop: Soybean Soil Type: Plano Silt Loam Soil Test Date: 11/12/19 pH: 7.0 OM (%): 2.6 P (ppm): 15 K (ppm): 109

Plot Management

Tillage Operations: Field Cultivator cultivated 7/11/19

Product Rate Ibs/A: Analysis: Date: 240 46-0-0 5 /14/19 Preplant: Fertilizer: Starter: N/A N/A N/A Post plant: N/A N/A N/A Manure: N/A N/A N/A

Herbicide: Medal II EC @ 24 oz/A 5/17/19 Insecticide: N/A

Explorer @ 5 oz/A 5/17/19 **Hybrid:** Syngenta - Overland

Irrigation: N/A

Planting Date: 5/14/19 Planting Depth: 1.5" Row Width: 30"

Target Plant Density: 24000 plants per acre Planting Method: JD1700 w RTK

Harvest Date: 8/26/19 Harvest Method: Hand Harvest

Notes:

Experimental Design

Design: RCB 3 x 4 Factorial **Replications** 4

Plot Size Seeded: 10' x 25' Experiment Size: 0.5 A

Harvest Plot Size: 5' x 17'.5" Harvest Plant Density: 22900 plants per acre

Factors/Treatments:

Stand reduction or Leaf removal @ stage:

- 1) 0% @ 5 leaf stage (approximately V3 stage by collar method)
- 2) 25% @ 5 leaf stage (approximately V3 stage by collar method)
- 3) 50% @ 5 leaf stage (approximately V3 stage by collar method)
- 4) 75% @ 5 leaf stage (approximately V3 stage by collar method)
- 5) Leaf removal of 50% @ 5 leaf stage (approximately V3 stage by collar method)
- 6) 0% @ 10 leaf stage (approximately V8 stage by collar method)
- 7) 25% @ 10 leaf stage (approximately V8 stage by collar method)
- 8) 50% @ 10 leaf stage (approximately V8 stage by collar method)
- 9) 75% @ 10 leaf stage (approximately V8 stage by collar method)
- 10) Leaf removal of 50% @ 10 leaf stage (approximately V8 stage by collar method)
- 11) 0% @ 15 leaf stage (approximately V13 stage by collar method)
- 12) 25% @ 15 leaf stage (approximately V13 stage by collar method)
- 13) 50% @ 15 leaf stage (approximately V13 stage by collar method)
- 14) 75% @ 15 leaf stage (approximately V13 stage by collar method)
- 15) Leaf removal of 50% @ 15 leaf stage (approximately V13 stage by collar method)

Results: Table 1916-01

Table:1916-01. Influence of Sweet Corn Stand Reduction on Yield. Arlington, WI - 2019.

	gton, wi												
		Main	Secondary		5-ear	Cut	Fresh	Dry			Silking		
Thin	Thin	Unhusked	Unhusked	Unhusked	Husked	grain	grain	grain	Til		day of	Plant	Harvest
time	percent	ear yield	ear yield	yield	yield	moisture	yield	yield	number	height	year	height	density
	%	T/A	T/A	T/A	T/A	%	T/A	T/A	no.	in	DOY	in	plants/A
V3		7.7	0.8	8.5	7.2	74.3	5.1	1.3	5	24	210	63	18250
V8		7.7	0.8	8.5	7.0	73.8	4.8	1.3	2	22	210	61	17750
V13		6.8	1.1	7.9	6.8	74.0	4.8	1.3	3	22	210	62	17500
	0	8.6	0.7	9.3	8.6	73.5	6.0	1.6	2	22	210	65	22917
	25	7.9	0.8	8.7	7.0	73.9	5.0	1.3	4	22	210	62	17583
	50	6.6	1.2	7.8	6.5	74.1	4.4	1.2	5	23	210	61	15167
	75	5.7	0.8	6.5	4.3	74.7	3.0	0.7	3	25	211	60	9833
	L50	8.2	0.9	9.2	8.6	73.9	6.1	1.6	3	21	210	63	23667
V3	0	8.3	0.7	9.0	8.4	73.4	5.8	1.5	2	23	210	65	22500
V3	25	8.1	0.7	8.7	7.3	73.5	5.3	1.4	5	19	210	63	18500
V3	50	7.4	1.0	8.4	7.0	74.6	5.0	1.3	7	23	211	62	16750
V3	75	6.5	1.1	7.5	5.3	75.7	3.6	0.9	5	35	211	63	11500
V3	L50	8.4	0.4	8.8	8.3	74.4	5.8	1.5	4	22	210	63	22000
V8	0	9.1	0.4	9.6	8.4	74.1	5.7	1.5	2	19	210	65	21750
V8	25	8.3	0.9	9.2	6.7	73.6	4.7	1.2	3	26	210	62	16500
V8	50	6.2	1.4	7.5	6.8	73.3	4.3	1.2	4	26	209	61	15000
V8	75	5.9	0.4	6.3	4.4	74.3	3.1	0.8	2	17	210	57	10250
V8	L50	9.1	0.7	9.8	8.6	73.7	6.1	1.6	2	20	210	62	25250
V13	0	8.4	0.9	9.3	9.2	72.9	6.6	1.8	4	25	210	64	24500
V13	25	7.4	0.9	8.2	7.0	74.6	4.9	1.2	4	21	210	63	17750
V13	50	6.3	1.1	7.4	5.7	74.4	4.0	1.0	5	21	211	61	13750
V13	75	4.8	0.9	5.7	3.1	74.1	2.2	0.6	1	22	211	60	7750
V13	L50	7.1	1.7	8.8	8.9	73.8	6.3	1.6	3	23	210	64	23750
Mean		7.4	0.9	8.3	7.0	74.0	4.9	1.3	3	23	210	62	17833
Probability(%)													
Thin time (T)		0.3	0.4	5.0	59.3	39.7	54.5	74.4	2.9	39.0	26.7	5.4	71.2
Thin percent (P)		0.0	0.6	0.0	0.0	16.3	0.0	0.0	4.2	75.6	72.0	0.0	0.0
TxP		24.8	0.0	17.0	44.0	31.2	41.6	40.3	84.7	1.9	31.4	22.5	28.2
LSD (0.10)													
Thin time (T)		0.5	0.2	0.5	NS	NS	NS	NS	1	NS	NS	1.2	NS
Thin percent (P)		0.6	0.2	0.6	0.9	NS	0.7	0.2	2	NS	NS	2	2005
TxP		NS	0.4	NS	NS	NS	NS	NS	NS	8	NS	NS	NS